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Songwu Lu, Senior Member, IEEE, and Wenfei Wu

Abstract—Data center networks encode locality and topology in-
formation into their server and switch addresses for performance
and routing purposes. For this reason, the traditional address
configuration protocols such as DHCP require a huge amount of
manual input, leaving them error-prone. In this paper, we present
DAC, a generic and automatic Data center Address Configuration
system. With an automatically generated blueprint that defines
the connections of servers and switches labeled by logical IDs,
e.g., IP addresses, DAC first learns the physical topology labeled
by device IDs, e.g., MAC addresses. Then, at the core of DAC
is its device-to-logical ID mapping and malfunction detection.
DAC makes an innovation in abstracting the device-to-logical ID
mapping to the graph isomorphism problem and solves it with
low time complexity by leveraging the attributes of data center
network topologies. Its malfunction detection scheme detects
errors such as device and link failures and miswirings, including
the most difficult case where miswirings do not cause any node
degree change. We have evaluated DAC via simulation, implemen-
tation, and experiments. Our simulation results show that DAC
can accurately find all the hardest-to-detect malfunctions and
can autoconfigure a large data center with 3.8 million devices in
46 s. In our implementation, we successfully autoconfigure a small
64-server BCube network within 300 ms and show that DAC is a
viable solution for data center autoconfiguration.

Index Terms—Address configuration, data center networks
(DCNs), graph isomorphism.

I. INTRODUCTION

A. Motivation

M EGA data centers [1] are being built around the world
to provide various cloud computing services such as

Web search, online social networking, online office, and IT
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infrastructure outsourcing for both individual users and organi-
zations. To take advantage of economies of scale, it is common
for a data center to contain tens or even hundreds of thousands
of servers. The current choice for building data centers is using
commodity servers and Ethernet switches for hardware and the
standard TCP/IP protocol suite for interserver communication.
This choice provides the best performance to price tradeoff [2].
All the servers are connected via network switches to form a
large distributed system.
Before the servers and switches can provide any useful ser-

vices, however, they must be correctly configured. For existing
data centers using the TCP/IP protocol, the configuration in-
cludes assigning an IP address to every server. For layer-2 Eth-
ernet, we can use DHCP [3] for dynamic IP address configura-
tion. However, servers in a data center need more than one IP
address in certain address ranges. This is because, for perfor-
mance and fault tolerance reasons, servers need to know the lo-
cality of other servers. For example, in a distributed file system
[4], a chunk of data is replicated several times, typically three,
to increase reliability. It is better to put the second replica on a
server in the same rack as the original, and the third replica on a
server at another rack. The current practice is to embed locality
information into IP addresses. The address locality can also be
used to increase performance. For example, instead of fetching
a piece of data from a distant server, we can retrieve the same
piece of data from a closer one. This kind of locality-based op-
timization is widely used in data center applications [4], [5].
The newly proposed data center network (DCN) struc-

tures [6]–[9] go one step further by encoding their topology
information into their logical IDs. These logical IDs can take
the form of IP address (e.g., in VL2 [9]), MAC address (e.g.,
in Portland [8]), or even newly invented IDs (e.g., in DCell [6]
and BCube [7]). These structures then leverage the topological
information embedded in the logical IDs for scalable and effi-
cient routing. For example, Portland switches choose a routing
path by exploiting the location information of destination
Pseudo-MAC (PMAC). BCube servers build a source routing
path by modifying one digit at one step based on source and
destination BCube IDs.
For all the cases above, we need to configure the logical IDs,

which may be IP or MAC addresses or BCube or DCell IDs,
for all the servers and switches. Meanwhile, in the physical
topology, all the devices are identified by their unique device
IDs, such as MAC addresses. A naïve way is to build a static de-
vice-to-logical ID mapping table at the DHCP server. Building
such a table is mainly a manual effort that does not work for
the following two reasons. First of all, the scale of data center
is huge. It is not uncommon that a mega data center can have
hundreds of thousands of servers [1]. Second, manual config-
uration is error-prone. A recent survey from 100 data center
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professionals [10] suggested that 57% of the data center out-
ages are caused by human errors. Two more surveys [11], [12]
showed 50%–80% of network downtime is due to human con-
figuration errors. In short, “the vast majority of failures in data
centers are caused, triggered or exacerbated by human errors”
[13].

B. Challenges and Contributions

Automatic address configuration is therefore highly desirable
for data center networks. We envision that a good autoconfigu-
ration system will have the following features, which also pose
challenges for building such a system.
• Generality: The system needs to be applicable to various
network topologies and addressing schemes.

• Efficiency and scalability: The system should assign a log-
ical ID to a device quickly and be scalable to a large number
of devices.

• Malfunction and error handling: The system must be able
to handle various malfunctions such as broken NICs and
wires and human errors such as miswirings.

• Minimal human intervention: The system should require
minimal manual effort to reduce human errors.

To the best of our knowledge, there are very few existing
solutions, and none of them can meet all the requirements
above. In this paper, we address these problems by proposing
DAC—a generic and automatic Data center Address Configu-
ration system for the existing and future data center networks.
To make our solution generic, we assume that we only have a
blueprint of the to-be-configured data center network, which
defines how the servers and switches are connected and labels
each device with a logical ID. The blueprint can be automat-
ically generated because all the existing data center network
structures are quite regular and can be described either recur-
sively or iteratively (see [6]–[9] for examples).
Through a physical network topology learning procedure that

we will describe in Section V, DAC first automatically learns
and stores the physical topology of the data center network into
an autoconfiguration manager. Then, we make the following
two key contributions when designing DAC.
First of all, we solve the core problem of autoconfiguration:

how to map the device IDs in the physical topology to the log-
ical IDs in the blueprint while preserving the topological re-
lationship of these devices. DAC makes an innovation in ab-
stracting the device-to-logical ID mapping to the graph isomor-
phism (GI) problem [14] in graph theory. Existing GI solutions
are too slow for some large-scale data center networks. Based on
the attributes of data center network topologies, such as sparsity
and symmetry (or asymmetry), we apply graph theory knowl-
edge to design an improved algorithm that significantly speeds
up the mapping. Specifically, we use three speedup techniques:
candidate selection via SPLD, candidate pruning via orbit, and
selective splitting. The first technique is our own. The last two
we selected from previous works [15] and [16], respectively,
after finding that they are quite effective for data center graphs.
Second, despite that the malfunction detection problem is

NP-complete and APX-hard,1 we design a practical scheme that
subtly exploits the degree regularity in all data center structures
to detect the malfunctions causing device degree change. For

1A problem is APX-hard if there is no polynomial-time approximation
scheme.

the hardest one with no degree change, we propose a scheme
to compare the blueprint graph and the physical topology graph
from multiple anchor points and correlate malfunctions via ma-
jority voting. Evaluation shows that our solution is fast and is
able to detect all the hardest-to-detect malfunctions.
We have studied our DAC design via extensive experiments

and simulations. The experimental results show that the time
of our device-to-logical ID mapping scales in proportion to the
total number of devices in the networks. Furthermore, our sim-
ulation results show that DAC can autoconfigure a large data
center with 3.8 million devices in 46 s. We have also devel-
oped and implemented DAC as an application on a 64-server
test bed, where the 64 servers and 16 mini-switches form a
two-level BCube [7] network. Our autoconfiguration protocols
automatically and accurately assign BCube logical IDs to these
64 servers within 300 ms.
Roadmap: The rest of the paper is organized as follows.

Section II presents the system overview. Section III introduces
the device-to-logical ID mapping. Section IV discusses how
DAC deals with malfunctions. Sections V and VI evaluate DAC
via experiments, simulations, and implementations. Section VII
discusses the related work. Section VIII concludes the paper.

II. SYSTEM OVERVIEW

One important characteristic shared by all data centers is that
a given data center is owned and operated by a single organi-
zation. DAC takes advantage of this property to employ a cen-
tralized autoconfiguration manager, which we call DAC man-
ager throughout this paper. DAC manager deals with all the
address configuration intelligences such as physical topology
collection, device-to-logical ID mapping, logical ID dissemina-
tion, and malfunction detection. In our design, DAC manager
can simply be a server in the physical topology or can run on a
separate control network.
Our centralized design is also inspired by the success of sev-

eral recent large-scale infrastructure deployments. For instance,
the data processing system MapReduce [5] and the modern
storage GFS [4] employ a central master at the scale of tens of
thousands of devices. More recently, Portland [8] leverages a
fabric manager to realize a scalable and efficient layer-2 data
center network fabric.
As stated in our first design goal, DAC should be a generic

solution for various topologies and addressing schemes. To
achieve this, DAC cannot assume any specific form of structure
or addressing scheme in its design. Considering this, DAC only
uses the following two graphs as its input.
1) Blueprint: Data centers have well-defined structures.

Prior to deploying a real data center, a blueprint [Fig. 1(a)]
should be designed to guide the construction of the data center.
To make our solution generic, we only require the blueprint to
provide the following minimal information.
• Interconnections between devices: It should define the in-
terconnections between devices. Note that though it is pos-
sible for a blueprint to label port numbers and define how
the ports of neighboring devices are connected, DAC does
not depend on such information. DAC only requires the
neighbor information of the devices, contained in any con-
nected graph.
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Fig. 1. Example of blueprint and physical topology constructed by following
the interconnections in blueprint. (a) Blueprint: Each node has a logical ID.
(b) Physical network topology: Each device has a device ID.

Fig. 2. DAC system framework with four modules.

• Logical ID for each device: It should specify a logical ID
for each device.2 The encoding of these logical IDs con-
veys the topological information of the network structure.
These logical IDs are vital for server communication and
routing protocols.

Since data center networks are quite regular and can be de-
scribed iteratively or recursively, we can automatically generate
the blueprint using software.
2) Physical Network Topology: The physical topology

[Fig. 1(b)] is constructed by following the interconnections
defined in the blueprint. In this physical topology, we use the
MAC address as a device ID to uniquely identify a device. For
a device with multiple MAC addresses, we use the lowest one.
In the rest of the paper, we use to denote

the blueprint graph and to denote the physical
topology graph. are the set of nodes (i.e., devices) with
logical/device IDs, respectively, and are the set of edges
(i.e., links). Note that while the blueprint graph is known for
any data center, the physical topology graph is not known
until the data center is built and information collected.
The whole DAC system structure is illustrated in Fig. 2. The

two core components of DAC are device-to-logical ID mapping
andmalfunction detection and handling. We also have a module
to collect the physical topology and a module to disseminate the
logical IDs to individual devices after DACmanager finishes the
device-to-logical IDmapping. In what follows, we overview the
design of these modules.
3) Physical Topology Collection: In order to perform logical

ID resolution, we need to know both blueprint and phys-
ical topology . Since is not known readily, DAC requires
a communication channel over the physical network to collect
the physical topology information. To this end, we propose a

2While most data center structures, like BCube [7], DCell [6], Ficonn [17],
and Portland [8], use device-based logical ID, there also exist structures, like
VL2 [9], that use port-based logical ID. For brevity, in this paper, DAC is in-
troduced and evaluated as the device based case. It can handle the port-based
scenario by simply considering each port as a single device and treating a device
with multiple ports as multiple logical devices.

Communication channel Building Protocol (CBP). The channel
built from CBP is a layered spanning tree, and the root is DAC
manager with level 0, its children are level 1, so on and so forth.
When the channel is built, the next step is to collect the phys-

ical topology . For this, we introduce a Physical topology
Collection Protocol (PCP). In PCP, the physical topology in-
formation, i.e., the connection information between each node,
is propagated bottom–up from the leaf devices to the root (i.e.,
DAC manager) layer by layer. After is collected by DAC
manager, we go to the device-to-logical ID mapping module.
4) Device-to-Logical ID Mapping: After has been col-

lected, we come to device-to-logical IDmapping, which is a key
component of DAC. As introduced in Section I, the challenge
is how to have the mapping reflect the topological relationship
of these devices. To this end, we devise , a fast one-to-one
mapping engine, to realize this functionality. We elaborate this
fully in Section III.
5) Logical ID Dissemination: When logical IDs for all the

devices have been resolved, i.e., the device-to-logical ID map-
ping table is achieved, we need to disseminate this information
to the whole network. To this end, we introduce a Logical ID
Dissemination Protocol (LDP). In contrast to PCP, in LDP the
mapping table is delivered top–down from DACmanager to the
leaf devices, layer by layer. Upon receipt of such information,
a device can easily index its logical ID according to its device
ID. A more detailed explanation of LDP together with CBP and
PCP is introduced in Section V.
6) Malfunction Detection and Handling: DAC needs to au-

tomatically detect malfunctions and pinpoint their locations. For
this, we introduce amalfunction detection and handlingmodule.
In DAC, this module interacts tightly with the device-to-logical
ID mapping module because the former one is only triggered
by the latter. If there exist malfunctions in , our engine
quickly perceives this by noticing that the physical topology
graph mismatches with the blueprint graph . Then, the
malfunction detection module is immediately invoked to detect
those malfunctioning devices and report them to network ad-
ministrators. We describe this module in Section IV.

III. DEVICE-TO-LOGICAL ID MAPPING

In this section, we formally introduce how DAC performs the
device-to-logical ID mapping. We first formulate the mapping
using graph theory. Then, we solve the problem via optimiza-
tions designed for data center structures. Lastly, we discuss how
to do the mapping for data center expansion.

A. Problem Formulation and Solution Overview

As introduced, the challenge here is to do the device-to-log-
ical mapping such that this mapping reflects the topological re-
lationship of these devices. Considering we have the blueprint
graph and the physical topology graph

, to meet the above requirement, we formulate the map-
ping problem as finding a one-to-one mapping between nodes
in and while preserving the adjacencies in and .
Interestingly, this is actually a variant of the classical graph iso-
morphism (GI) problem [14].
Definition 1: Two graphs and

are isomorphic, denoted by , if there is a bijection
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Fig. 3. mapping engine.

such that if and only if
, for all , . Such a bijection is called a graph iso-

morphism between and .
To the best of our knowledge, we are the first to introduce the

GI model to data center networks, thus solving the address auto-
configuration problem. After the problem formulation, the next
step is to solve the GI problem. In the past 20 years, many re-
search efforts have been made to determine whether the general
GI problem is in P or NP [14]. When the maximum node degree
is bounded, polynomial algorithm with time complexity
is known [18], where is the number of nodes and is the max-
imum node degree.
However, is too slow for our problem since data cen-

ters can have millions of devices [6] and the maximal node de-
gree can be more than 100 [9]. To this end, we devise , a
fast one-to-one mapping engine. As shown in Fig. 3, starts
with a base algorithm (i.e., ) for general
graphs, and upon that we propose an improved algorithm (i.e.,

) using three speedup techniques: candidate se-
lection via SPLD, candidate filtering via orbit, and selective
splitting, which are specially tailored for the attributes of data
center structures and our real address autoconfiguration applica-
tion. In the following, we first introduce some preliminaries to-
gether with the base algorithm, and then introduce the improved
algorithm.

B. Base Algorithm

1) Preliminaries: Given a graph , a partition
of a vertex set , e.g., , is a set of
disjoint nonempty subsets of whose union is . We call each
subset a cell. In , the basic operations on
partitions or cells are “decompose” and “split.”
• Decompose: Given a node , a cell , and a partition
where and , using to decompose means
to replace with and in partition , where is
set minus meaning to remove node from .

• Split: Given two cells , , using to split
means doing the following. First, for each node ,
we calculate a value as the number of con-
nections between node and nodes in where is called
connection function. Then, we divide into smaller cells
by grouping the nodes with the same value together to be
a new cell. Moreover, we call the inducing cell and
the target cell. The target cell should be a non-singleton.

A partition is equitable if no cell can be split by any other cell
in the partition. A partition is discrete if each cell of this par-
tition is a singleton (i.e., single element). Suppose we use an

Fig. 4. Pseudocode of the generic algorithm for one-to-one mapping (i.e.,
graph isomorphism). For clarity, the functions and

are explained in the context.

inducing cell pair to split target cell pair , respec-
tively. are divided isomorphically by if for each
value , has the same number of nodes with
-connection to as has to .
Note that the cells in a partition have their orders. We use

parenthesis to represent a partition, and each cell is indexed by
its order. For example, means a parti-
tion with cells and the th cell is . In our mapping algo-
rithm, decomposition/split operation always works on the cor-
responding pair of cells (i.e., two cells with the same order) in
two partitions. Furthermore, during these operations, we place
the split cells back to the partitions in corresponding orders. For
example, decomposing with , we replace with
, and with , , and then place the split

cells back to the partitions such that and are in the same
order and and are in the same order.
In addition to the above terms, we further have two impor-

tant terms used in the improved algorithm, which are SPLD and
orbit.
• SPLD: SPLD is short for shortest path length distribution.
The SPLD of a node is the distribution of distances be-
tween this node and all other nodes in the graph.

• Orbit: An orbit is a subset of nodes in graph such that
two nodes and are in the same orbit if there exists
an automorphism3 of that maps to [19]. For ex-
ample, in of Fig. 6, to are in the same orbit since
there is an automorphism permutation of , which is

, that maps to .
2) Base Algorithm: Fig. 4 is a base mapping algorithm for

general graphs we summarize from previous literature. It con-
tains and , and it repeatedly
decomposes and refines (or splits) and until either they
both are discrete, or it terminates in the middle finding that
and are not isomorphic.
In each level of recursion, we first check if the current par-

titions and are discrete. If so, we return (line 2)
and get a one-to-one mapping by mapping each singleton cell
of to the corresponding singleton cell of . Otherwise, we
do .

3An automorphism of a graph is a graph isomorphism with itself, i.e., a map-
ping from the vertices of the given graph back to vertices of such that the
resulting graph is isomorphic with .
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In , we first select a pair of corre-
sponding non-singleton cells and , and then se-
lect a pair of nodes and to decom-
pose and , respectively (lines 4–6). Then, we
get partitions and

. Immediately after
decomposition, we do on and (line 7).
In , we repeatedly try to use every newly born

pair of cells to split all other corresponding non-singleton pairs
of cells. For each pair of cells that have been simultaneously
divided, we check whether the two cells are divided isomorphi-
cally or not. If not, then returns .
Otherwise, if each time the pair of target cells are isomorphically
divided, will continue until and
are equitable and returns .
If returns true, we go one step further

of recursion to work on new equitable partitions (line 8). Oth-
erwise, it means that cannot be mapped to , and we try the
next candidate in (line 11). If all the candidates in fail
to be mapped to , we must backtrack (line 10). Such recur-
sion continues until either both partitions become discrete, i.e.,
a one-to-one mapping is found (line 2), or we backtrack to root
of the search tree, thus concluding that no one-to-one mapping
exists (line 12).

C. Improved Algorithm

Compared to general graphs, network topologies of data cen-
ters have the following attributes: 1) they are sparse; 2) they
are typically either highly symmetric like BCube [7] or highly
asymmetric like DCell [6]. In any case, for our address autocon-
figuration problem, the blueprint graph is available in advance,
which means we can do some precomputation.
Based on these features, we apply graph theory to design an

improved algorithm with three speedup techniques: candidate
selection via SPLD, candidate filtering via orbit, and selective
splitting to speed up the device-to-logical ID mapping. Specif-
ically, we introduce the first technique and borrow the last two
from [15] and [16], respectively, based on their effectiveness
for graphs derived for data centers. We prove that adding these
speedup techniques to the base algorithm maintains its cor-
rectness [20]. Our experiments in Section VI-B indicate that we
need all these three speedup techniques to solve our problem,
and any partial combination of them is slow for some structures.
Fig. 5 is the improved algorithm built on the base algorithm. In
the following, we explain the three speedup techniques empha-
sizing the reasons why they are suitable for data center graphs.
1) Candidate Selection via SPLD: We observe that nodes in

data centers have different roles such as switches and servers,
and switches in some data centers like FatTree can be further di-
vided into ToR, aggregation, and core. Hence, from this point of
view, SPLD can be helpful by itself to distinguish nodes of dif-
ferent roles. Furthermore, SPLD can provide even significant
improvement for structures like DCell, which are very asym-
metric. This is because the SPLDs of different nodes in DCell
are very different. To take advantage of this property, we pro-
pose using SPLD as a more sophisticated signature to select
mapping candidates. That is, when we try to select a node in

Fig. 5. Pseudocode of the improved algorithm for data center graphs. For
clarity, is explained in the context.

as a candidate to be mapped to a node in , we only se-
lect the from these nodes that have the same SPLD as . This
is effective because two nodes with different SPLDs cannot be
mapped to each other. However, computing SPLDs for all nodes
in a large graph requires time. Fortunately, this can be computed
earlier on the blueprint.
In our improved algorithm, we precompute the SPLDs for

all nodes of beforehand. In lines 6 and 7, we improve the
base algorithm in this way: If we find the number of candidates
(i.e., nodes in ) for a node, say in , to be mapped to is
larger than a threshold (i.e., ) and the number
of different SPLDs of them is larger than a threshold (i.e.,

), we compute the SPLD for and only
select candidates in having the same SPLD. Thresholds
and are tunable. Note that using this technique is a tradeoff:
Althoughwe can do precomputation on offline, applying this
optimization means that we should compute online,
which also consumes time. In all our experiments later, we apply
this technique on all the structures only once at the first round
of mapping.
2) Candidate Filtering via Orbit: It is indicated in [15] that

for and , if cannot be mapped to , all nodes in
the same orbit as cannot be mapped to either. We find this
theory is naturally suited for solving the GI problem on data
centers. First, some structures such as BCube are highly sym-
metric, and there should be many symmetric nodes within these
structures that are in the same orbit. Second, the blueprint graph
is available much earlier than the real address autoconfiguration
stage, and we can easily precompute the orbits in the blueprint
beforehand using preexisting tools such as [16], [21].
In Fig. 4, the base algorithm tries to map to every node in

iteratively if the current mapping fails, which is not effective es-
pecially for highly symmetric data center structures. Observing
this, in the improved algorithm, we precompute all the orbits of
beforehand. Then, as shown in lines 16–18, we improve the

base algorithm: If we find a certain node cannot be mapped
to , we skip all the attempts that try to map to any other node



CHEN et al.: DAC: GENERIC AND AUTOMATIC ADDRESS CONFIGURATION FOR DATA CENTER NETWORKS 89

Fig. 6. Example of mapping between and . White arrow is decomposition, and dark arrow is refinement.

in the same orbit as because, according to the above theory,
these nodes cannot be mapped to either.
3) Selective Splitting: In the base algorithm,

tries to use the inducing cell to split all the other cells. As data
center structures are sparse, it is likely that while there are
many cells in the partition, the majority of them are disjoint
with the inducing cell. Observing this, in line 11, we use

, in which we only try to split the cells that
really connect to the inducing cell other than all.4

Furthermore, when splitting a connected cell , the base
algorithm tries to calculate the number of connections between
each node in and the inducing cell, and then divide based
on these values. Again, due to sparsity, it is likely that the
number of nodes in that really connect to the inducing cell
is very small. Observing this, in a similar way, we speed up
by only calculating the number of connections for the nodes
actually connected. The unconnected nodes can be grouped
together directly. Specifically, when splitting using inducing
cell , we first move the elements in with connections to
to the left-end of and leave all unconnected elements on the
right. Then, we only calculate the values for the elements on
the left, and group them according to the values.
4) Walkthrough Example for : We provide a step-by-step

example of our algorithm in Fig. 6. is labeled by its logical
IDs, and is labeled by its device IDs. White arrows mean
decomposition, and dark arrows mean refinement. Suppose all
orbits in have been calculated beforehand. In this case, they
are .
Initially, all nodes in are in one cell in partitions

. Step (1) decomposes original using .
Step (2) refines the current using inducing cells

, but fails due to a nonisomorphic division. This
is because during splitting, has four
elements with 1-connection to and three elements with
0-connection, while has one element with
1-connection to and seven elements with 0-connection.
Therefore, they are not divided isomorphically.
From step (2), we know cannot be mapped to . By

speedup technique 2, we skip the candidates , , and ,
which are in the same orbit as . Thus, in Step (3), we de-
compose the original using . Step (4) refines the
current using . Specifically, in , we find

4We achieve this by maintaining an adjacency list that is built once when the
graph is read. In the adjacency list, for each vertex, we keep the neighboring
vertices, so at any point we know the vertices each vertex is connected to. We
also have another data structure that keeps track of the place where each vertex
is located at within the partition. In this way, we know which cell is connected
to the inducing cell.

, , , and have 1-connection to while the rest
do not. In , we find , , , and have 1-connection to

while the rest do not. Therefore, are isomorphi-
cally divided by . After step (4), since the current
partitions are not yet equitable, in steps (5) and (6), we
continuously use newly born cells
and to further split other cells until are
equitable.
Steps (7)–(9) decompose the current partitions using ,
, and , respectively. Since in each of these three steps,

there is no cell that can be split by other cells, no division is per-
formed. After step (9), the two partitions are discrete,
and we find a one-to-one mapping between and by map-
ping each node in to its corresponding node in .
Two things should be noted in the above example: First and

most importantly, we do not use speedup technique 1 since we
want to show the case of nonisomorphic division in steps (1) and
(2). In the real mapping, after applying speedup technique
1, we will directly go from step (3) instead of trying to map
to because they have different SPLDs. This shows that

SPLD is effective in selecting mapping candidates. Second, al-
though we have not explicitly mentioned speedup technique 3,
in each refinement we only try to split the connected cells rather
than all cells. For example, after step (7), are newly
born, but when it comes to refinement, we do not try to split

or using because
they are disjoint.

D. Using for Data Center Expansion

To meet the growth of applications and storage, the scale of
a data center does not remain the same for long [22]. Therefore,
address autoconfiguration for data center expansion is required.
Two direct approaches are either to configure the new part di-
rectly or to configure the entire data center as a whole. However,
both approaches have problems. The first one fails to take into
account the connections between the new part and the old part
of the expanded data center. The second one considers the con-
nections between the new part and the old part, but it may cause
another lethal problem, i.e., the newly allocated logical IDs are
different from the original ones for the same devices of the old
part, messing up existing communications.
To avoid these problems, DAC configures the entire data

center while keeping the logical IDs for the old part unmodified.
To achieve this goal, we still use , but need to modify the
input. Instead of putting all the nodes from a graph in one cell as
before, we first differentiate nodes between the new part and the
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old part in and . Since we already have the device-to-log-
ical ID mapping for the old part, say for , we
explicitly express such one-to-one mapping in the partitions.
In other words, we have and

, and all the nodes for the new part
of are in , respectively. Then, we refine
until they both are equitable. At last, we enter mapping
with the equitable partitions. In this way, we can produce a
device-to-logical ID mapping table for the new part of data
center while keeping the logical IDs for devices of the old part
unmodified.

IV. MALFUNCTION DETECTION AND HANDLING

As introduced before, the malfunction detection module
is triggered when returns . This “false” indicates
the physical topology is not the same as the blueprint. In this
section, we describe how DAC handles malfunctions.

A. Malfunction Overview

Malfunctions can be caused by hardware and software fail-
ures or simply human configuration errors. For example, bad or
mismatched network cards and cables are common, and mis-
wired or improperly connected cables are nearly inevitable.
We consider and categorize three malfunction types in data

centers: node, link, and miswiring. The first type occurs when
a given server or switch breaks down from hardware or soft-
ware reasons, causing it to be completely unreachable and dis-
connected from the network. The second one occurs when the
cable or network card is broken or not properly plugged in so
that the connectivity between devices on that link is lost. The
third one occurs when wired cables are different from those in
the blueprint. These malfunctions may introduce severe prob-
lems and downgrade the performance.
Note that from the physical topology, it is unlikely to clearly

distinguish some failure types, e.g., a crashed server versus
completely malfunctioning interface cards on that server. Our
goal is to detect and further locate all malfunction-related
devices and report the device information to network admin-
istrators, rather than identifying the malfunction type. We
believe our malfunction handling not only solves this issue for
autoconfiguration, but also reduces the deployment/mainte-
nance costs for real-world large data center deployment.

B. Problem Complexity and Challenge

The problem of malfunction detection can be formally de-
scribed as follows. Given and , the problem to locate
all the malfunctioning parts in the graph is equivalent
to obtaining the maximum common subgraph (MCS)
of and . Thus, we compare to to find the
differences, which are the malfunctioning parts. All the devices
(i.e., servers or switches) related to these parts, which we call
malfunctioning devices, can be detected. However, it is proven
that the MCS problem is NP-complete [23] and APX-hard [24].
That is, there is no efficient algorithm, especially for large
graphs such as those of data center network topologies. There-
fore, we resort to designing our own algorithms based on the
particular properties of data center structures and our real-world

TABLE I
DEGREE PATTERNS IN BCUBE, FATTREE, VL2, AND DCELL STRUCTURES.

, , , ARE THE PARAMETERS TO DEFINE THESE NETWORKS.
THEY ARE FIXED FOR A GIVEN STRUCTURE

application scenario. There are two problems we need to ad-
dress in Sections IV-C–IV-E: 1) detecting the malfunctioning
devices by identifying their device IDs; and 2) locating the
physical position of a malfunctioning device with its device ID
automatically.

C. Practical Malfunction Detection Methods

To achieve better performance and easier management,
large-scale data centers are usually designed and constructed
according to some patterns or rules. Such patterns or rules
imply two properties of the data center structures. 1) The nodes
in the topologies typically have regular degrees. For example,
we show the degree patterns for several well-known data
center networks in Table I. 2) The graphs are sparse, so that
our can quickly determine if two graphs are isomorphic.
These properties are important for us to detect malfunctions
in data centers. In DAC, the first property is used to detect
malfunctioning devices where there are node degree changes,
and the second one serves as a tool in our malfunction detection
scheme for the case where no degree change occurs.
1) Malfunction With Node Degree Change: For the afore-

mentioned three types of malfunctions, we discuss them one by
one as follows. Our observation is that most of the cases may
cause the change of degree on devices.
• Node: If there is a malfunctioning node, the degrees of its
neighboring nodes are decreased by one, and thus it is pos-
sible to identify the malfunction by checking its neighbor
nodes.

• Link: If there is a malfunctioning link, the degrees of as-
sociated nodes are decreased by one, making it possible to
detect.

• Miswiring: Miswirings are somewhat more complex than
the other two errors. As shown in the left of Fig. 7, the
miswiring causes its related nodes to increase or decrease
their degrees and can be detected readily. On the contrary,
in the right of Fig. 7, the miswirings of a pair of cables
occur coincidentally so that the degree change caused by
one miswired cable is glossed over by another, and thus no
node degree change happens. We discuss this hardest case
separately in the following.

Note that for any malfunction caused by the links, i.e., link
failure or miswirings, we report the associated nodes (i.e., mal-
functioning devices) in our malfunction detection.
2) Malfunction Without Node Degree Change: Though

in most cases the malfunctions cause detectable node degree
change [25], it is still possible to have miswirings with no node
degree change. This case occurs after an administrator has
checked the network and the degree-changing malfunctions
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Fig. 7. Miswirings with and without degree change.

Fig. 8. Pseudocode for malfunction detection.

have been fixed. The practical assumptions here are: 1) the
number of nodes involved in such malfunctions is a consider-
ably small amount over all the nodes; 2) and have the
same number of nodes and node degree patterns.
Despite the miswirings, the vast majority part of and

are still the same. We leverage this fact to detect such mis-
wirings. Our basic idea is that we first find some nodes that are
supposed to be symmetric between and , then use those
nodes as anchor points to check if the subgraphs deduced from
them are isomorphic. Through this we derive the difference be-
tween the two graphs and correlate the malfunctioning candi-
dates derived from different anchor points to make a decision.
Basically, our scheme has two parts: anchor point selection and
malfunction detection.
To minimize the human intervention, the first challenge is

selecting anchor pairs between the blueprint graph and the
physical topology graph without human input. Our idea
is again to leverage the SPLD. Considering that the number
of nodes involved in miswirings is small, it is likely that two
“symmetric” nodes in two graphs will still have similar SPLDs.
Based on this, we design our heuristics to select anchor pair
points, which is in Fig. 8. In the
algorithm, is simply the Euclidean
distance. Given that two node with similar SPLDs are not
necessarily a truly symmetric pair, our malfunction detection
scheme will take the potential false positives into account and
handle this issue via majority voting.
Once the anchor node pairs have been selected, we com-

pare and from these anchor node pairs and correlate
malfunctions via majority voting. The algorithm for this is

in Fig. 8. Specifically, given
, and definition of maximal subgraph

in line 5, for each anchor pair , we search the
maximal isomorphic subgraph of graphs with hop
length from nodes respectively. The process to obtain
such a subgraph is in line 7. We can use a binary search to
accelerate the searching procedure. If we find that and

are isomorphic while and are not,
we assume some miswirings happened between -hop and

-hop away from , and the nodes in these two hops are
suspicious. In line 9, we increase a counter for each of these
nodes to represent this conclusion.
After finishing the detection from all the anchor points, we

report a list to the administrator. The list contains node device
IDs and counter values of each node, ranked in the descending
order of the counter values. Essentially, the larger its counter
value, the more likely the device is miswired. Then, the admin-
istrator will go through the list and rectify the miswirings. This
process stops when he finds a node is not really miswired and
ignores the rest of nodes on the list.
The accuracy of our scheme depends on the number of

anchor points we selected for detection versus the number of
miswirings in the network. Our experiments suggest that, with
a sufficient number of anchor points, our algorithm can always
find all the malfunctions (i.e., put the miswired devices on top
of the output list). According to the experimental results in
Section VI-D, with at most 1.5% of nodes selected as anchor
points, we can detect all miswirings on the evaluated structures.
To be more reliable, we can always conservatively select a
larger percentage of anchor points to start our detection, and
most likely we will detect all miswirings (i.e., have all of
them on top of the list). Actually, this can be facilitated by the
parallel computing because in our malfunction detection, the
calculations from different anchor points are independent of
each other and thus can be performed in parallel.
After fixing the miswirings, we will run to get the de-

vice-to-logical ID mapping again. Even in the case that not all
the miswirings are on the top of the list and we miss some,
will perceive that quickly. Then, we will rerun our detection al-
gorithm until all miswirings are detected and rectified, and
can get the correct device-to-logical ID mapping finally.

D. Device Locating

Given a detected malfunctioning device, the next practical
question is how to identify the location of the device given only
its device ID (i.e., MAC). In fact, the device locating procedure
is not necessarily achieved by an autoconfiguration algorithm,
but also possibly by some human efforts. In this paper, we argue
that it is a practical deployment and maintenance problem in
data centers, and thus we seek a scheme to collect such location
information automatically.
Our idea is to sequentially turn on the power of each rack in

order to generate a record for the location information. This pro-
cedure is performed only once, and the generated record is used
by the administrator to find a mapping between MAC and rack.
It works as follows. 1) To power on the data center for the first
time, the administrator turns on the power of server racks one by
one sequentially. We require a time interval between powering
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each rack so we can differentiate devices in different racks. The
time interval is a tradeoff: Larger values allow easier rack dif-
ferentiation, while smaller values reduce boot time cost on all
racks. We think by default it should be 10 s. 2) In the physical
topology collection stage, when reporting the topology informa-
tion to DAC manager, each device also piggybacks the boot-up
time, from when it had been powered on to its first reporting.
3) When receiving such boot-up time information, DAC man-
ager groups the devices with similar boot-up times (compared to
the power on time interval between racks). 4) When DAC man-
ager outputs a malfunctioning device, it also outputs the boot-up
time for that group. Therefore, the administrator can check the
rack physical position accordingly.

E. Run-Time Malfunction Handling

We have discussed the malfunction detection and handling,
focusing on the bootstrap stage. After that, a node should cache
its logical ID and neighbor information in case run-time mal-
functions occur. During the run-time stage, a rebooted device
may use its cached logical ID only if the ID has not timed out,
and its newly collected neighbor information is consistent with
its cached neighbor information. However, it is possible that the
device may crash and require replacement. In this case, there is
no cached logical ID on the device, and it must obtain a log-
ical ID at run-time. For a newly replaced device with no cache,
or a rebooted device with a timed-out logical ID cache and in-
consistent cached neighbor information, the device will collect
its neighbor information and propagate that information to DAC
manager and request a logical ID. Knowing the neighbor nodes,
DAC manager can easily figure out the requested logical ID.
To summarize, our malfunction detection and locating

designs focus on how to quickly detect and locate various
malfunctions including the most difficult miswiring cases. We
note that our schemes help to identify malfunctions, but not
repair them. It is our hope that the detection procedure can help
administrators to fix any malfunction more rapidly during the
autoconfiguration stage.

V. IMPLEMENTATION AND EXPERIMENT

In this section, we first introduce the protocols that are used
to do physical topology collection and logical ID dissemination.
Then, we describe our implementation of DAC.

A. Communication Protocols

To achieve reliable physical topology collection and logical
ID dissemination between all devices and DAC manager, we
need a communication channel over the network. We note that
the classical spanning tree protocol (STP) does not fit our sce-
nario: 1) we have a fixed root—DAC manager—so network-
wide broadcast for root selection is not necessary; 2) the scale
of data center networks can be hundreds of thousands, making it
difficult to guarantee reliability and information correctness in
the network-wide broadcast. Therefore, we provide a CBP to set
up a communication channel over a mega data center network.
Moreover, we introduce two protocols, namely the PCP and the
LDP, to perform the topology information collection and ID dis-
semination over that spanning tree built by CBP.

Building Communication Channel: In CBP, each network
device sends Channel Building Messages (CBMs) periodically
(with a timeout interval ) to all of its interfaces. Neighbor
nodes are discovered by receiving CBMs. Each node sends its
ownCBMs and does not relay CBMs received from other nodes.
To speed up the information propagation procedure, a node also
sends out a CBM if it observes changes in neighbor information.
A checking interval - is introduced to reduce the number
of CBMmessages by limiting the minimal interval between two
successive CBMs.
DAC manager sends out its CBM with its level marked as 0,

and its neighbor nodes correspondingly set their levels to 1. This
procedure continues until all nodes get their respective levels,
representing the number of hops from that node to DAC man-
ager. A node randomly selects a neighbor node as its parent if
that node has the lowest level among its neighbors and claims
itself as that node’s child by its next CBM. The communica-
tion channel building procedure is finished once every node has
its level and has selected its parent node. Therefore, the built
communication channel is essentially a layered spanning tree,
rooted at DAC manager. We define a leaf node as one that has
the largest level among its neighbors and no children node. If
a leaf node observes no neighbor updates for a timeout value

, it enters the next stage, physical topology information
collection.
Physical Topology Collection and Logical ID Dissemination:

Once the communication channel has been built by CBP, the
physical topology collection and logical ID dissemination over
the communication channel can be performed by using PCP
and LDP. Essentially, the topology collection is a bottom–up
process that starts from leaf devices and blooms up to DAC
manager, while the logical ID dissemination is a top–down style
that initiates from DAC manager and flows down to the leaf de-
vices.
In PCP, each node reports its node device ID and all its neigh-

bors to its parent node. After receiving all information from its
children, an intermediate node merges them (including its own
neighbor information) and sends them to its parent node. This
procedure continues until DAC manager receives the node and
link information of the whole network, and then it constructs
the physical network topology. In LDP, the procedure is reverse
to PCP. DAC manager sends the achieved device-to-logical ID
mapping information to all its neighbor nodes, and each inter-
mediate node delivers the information to its children. Since a
node knows the descendants from each child via PCP, it can di-
vide the mapping information on a per-child base and deliver
the more specific mapping information to each child. Note that
the messages exchanged in both PCP and LDP are unicast mes-
sages that require acknowledgements for reliability.

B. BCube Test Bed and Experiment

We designed and implemented DAC as an application over
the Windows network stack. This application implements the
modules described in Section II, i.e., device-to-logical ID map-
ping, communication channel building, physical topology col-
lection, and logical ID dissemination. We built a test bed using
64 Dell servers and 16 8-port DLink DGS-1008D Gigabit Eth-
ernet switches. Each server has an Intel 2-GHz dual-core CPU,
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Fig. 9. Test-bed topology and blueprint. (a) Physical topology and BCube IDs.
(b) Blueprint graph and BCube IDs.

2-GB DRAM, 160-GB disk, and an Intel Pro/1000PT dual-port
Ethernet NIC. Each link works at Gigabit.
The topology of our test bed is a BCube(8,1). It has two di-

mensions, and eight servers on each dimension connected by an
8-port Ethernet switch. Each server uses two ports of its dual-
port NIC to form a BCube network. Fig. 9 illustrates the phys-
ical test-bed topology and its corresponding blueprint graph.
Note that we only programmed our DAC design on servers, and
we did not touch switches in this setup because these switches
cannot be programmed. Thus, the blueprint graph of our test bed
observed at any server should have a degree of 14 instead of 2 as
there are seven neighbors for each dimension. This server-only
setup is designed to demonstrate that DAC works in real-world
systems, not its scalability.
In this setup, our DAC application is developed to automati-

cally assign the BCube ID for all the 64 servers in the test bed.
A server is selected as DACmanager by setting its level to 0. To
inspect the working process of DAC, we divide DAC into five
steps and check each of them:
1) CCB (communication channel building): from DAC man-
ager broadcasts the message with level 0 to the last node in
the network gets its level;

2) timeout: there is no change in neighboring nodes for
at leaf nodes;

3) TC (physical topology collection): from the first leaf node
sends out its TCM to DAC manager receives the entire
network topology;

4) mapping: device-to-logical ID mapping time including the
I/O time;

5) LD (logical IDs dissemination): fromDACmanager, sends
out the mapping information to all the devices to get their
logical IDs.

Table II shows the result with different - and parameters.
Note that - is to control the number of CBM messages,
is the timeout value for CBP broadcast, and is for TCM
triggering. The experiments show that the total configuration
time is mainly dominated by the mapping time and , and
- can control and reduce the bustiness of CBMmessages. In
all the cases, our autoconfiguration process can be done within
300 ms.

TABLE II
TIME (ms) CONSUMED DURING AUTOCONFIGURATION

TABLE III
NUMBER OF DEVICES IN EACH STRUCTURE

C. Implementation Experience on Click

We have implemented our DAC protocols (CBP, PCP, and
LDP) using Click software routers [26]. A Click router is a
directed graph of packet processing modules called elements
that implement tasks such as building a spanning tree among
switches or interacting with network devices.
We extended three Click standard Ethernet elements

Ether-SpanTree, Bridgemessage, and EtherSwitch for our
purpose and obtained three new elements ExtenEtherSpanTree,
ExtenBridgemessage, and ExtenEtherSwitch. The Exten-
Bridgmessage element defines the format of our CBM based
on the Bridge Protocol Data Unit (BPDU) packet format that
is already defined in the standard element Bridgemessage. For
every CBM packet, the node uses the ExtenEtherSpanTree
element to implement CBP. To implement PCP and LDP
functionalities, the node uses the ExtenEtherSwitch element to
maintain its parent and children information and to perform
topology collection and logical ID dissemination as described
in Section V-A. We omit further details due to space limitation.
We have made our implementation code publicly available
at [27]. Our experience with Click shows that DAC protocols
are easy to implement based on existing Ethernet protocols and
packet formats.

VI. PERFORMANCE EVALUATION

In this section, we evaluate DAC via extensive simulations.
We first introduce the evaluation methodology, and then present
the results.

A. Evaluation Methodology

Structures for Evaluation: We evaluate DAC via experi-
ments on four well-known data center structures: BCube [7],
FatTree [8], VL2 [9], and DCell [6]. Among these structures,
BCube is the most symmetric, followed by FatTree, VL2, and
DCell. DCell is the most asymmetric. All the structures can
be considered as sparse graphs with different sparsity. VL2
is the sparsest, followed by FatTree, DCell, and BCube. For
each of them, we vary the size as shown in Table III. Please
refer to these papers for details. Since BCube is specifically
designed for a modular data center (MDC) sealed in shipping
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Fig. 10. Speed of mapping on BCube, FatTree, VL2, and DCell structures, and its comparison to and . Note that we do not include the
performance curves of on DCell, FatTree, and VL2 structures because the run-time of on all the graphs bigger than DCell(3,3), FatTree(40) and
VL2(20,100), respectively, is more than one day. Furthermore, we use log-log scale to clearly show the performance of both and on DCell.

containers, the number of devices in BCube should not be very
large. We expect them to be in the thousands, or at most tens of
thousands. For FatTree and VL2, we intentionally make their
sizes to be as large as hundreds of thousands of nodes. DCell is
designed for large data centers. One merit of DCell is that the
number of servers in a DCell scales doubly exponentially as
the level increases. For this reason, we check the performance
of DAC on very large DCell graphs. For example, DCell(6,3)
has more than 3.8 million nodes.
Metrics: There are three metrics in our evaluation. First,

we measure the speed of on the aforementioned structures,
which includes both mapping from scratch (i.e., for brand-new
data centers) and mapping for incremental expansion (i.e., for
data center expansion), as well as the memory overhead in the
mappings. This metric is used to show how efficient is as
a device-to-logical ID mapping engine. Then, we estimate the
total time DAC takes for a complete autoconfiguration process.
Lacking a large test bed, we employ simulations. Lastly, we
evaluate the accuracy of DAC in detecting malfunctions via
simulations. All the experiments and simulations are performed
on a Linux server with an Intel 2.5-GHz dual-core CPU with
8 GB DRAM. The server runs Red-Hat 4.1.2 with Linux kernel
2.6.18.

B. Efficiency of Mapping Engine

Mapping From Scratch: We study the performance of to-
gether with the seminal GI tool proposed in [15] called

TABLE IV
SPEEDUP TECHNIQUES APPLIED IN DIFFERENT ALGORITHMS

and another algorithm proposed in digital design automation
field called [16]. For , we use the latest version,
v2.4. For , it does not calculate the one-to-one mapping
nor does the isomorphism check between two graphs by default.
Instead, it is a tool to calculate the automorphisms in a graph.
We observe that when inputting two graphs as one bigger graph
into , among all the output automorphisms there exists
at least one that maps each node in one graph to a node in an-
other given that the two graphs are isomorphic to each other.
To compare to , we improve its algorithm to check and
calculate a one-to-one mapping between two graphs and call
it . Essentially, includes candidate pruning via
orbit, is built on top of and introduces selective
splitting, and is further built on top of and includes
candidate selection via SPLD, shown in Table IV.
Fig. 10 plots the results for device-to-logical ID mapping.

Note that we do not include the I/O time for reading graphs into
memory. From the figure, we can see that the mapping time of

scales in proportion to the total number of devices in the
network.
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The results in Fig. 10 clearly demonstrate that is faster
than both and on all the evaluated structures.
can perform the mapping for all the structures within 10 s.

More specifically, for BCube(8,4), can finish the mapping in
less than 1.5 s. For FatTree(100) and VL2(100, 100), needs
4.16 and 1.07 s, respectively. For DCell(6,3) with 3.8 mil-
lion nodes, needs only 8.88 s. This finding is not surprising
since improves over and . Note that
is not shown in the figures of FatTree, VL2, and DCell since
its run-time for graphs bigger than DCell(3,3), FatTree(40), and
VL2(20,100) is too long (i.e., days) to fit into the figures nicely.
To better understand why performs best, we assess the

relative effectiveness of the three speedup techniques used in
the algorithms on popular data center structures. We make the
following three observations.
First, we find that candidate pruning via orbit is very efficient

for symmetric structures. For example, needs only 0.07 s
for BCube(4,4) with 2034 devices, whereas it requires 312 s for
FatTree(20) with 2500 devices. Another example is that while it
only takes less than 8 s to perform the mapping for BCube(8,4)
with 53 248 devices, it fails to obtain the result for either Fat-
Tree(40) with 58 500 devices or VL2(20,100) with 52 650 de-
vices within 24 h. One factor contributing to this effect is that
BCube is more symmetric than either FatTree or VL2 structure.
Second, our experiments suggest that selective splitting intro-

duced in should be more efficient for sparse graphs. For
example, VL2(100,100) and FatTree(100) have similar numbers
of devices (250 000 ), but VL2 needs only 6.33 s, whereas Fat-
Tree needs 18.50 s. This is because VL2(100,100) is sparser
than FatTree(100). We have checked the average node degree
of these two structures. The average degree for VL2(100,100) is
approximately 1.03. Compared to VL2(100,100), FatTree(100)
has an average node degree of 2.86, more than two times denser.
Finally, when candidate selection via SPLD is further intro-

duced in to work together with the above two techniques,
it exhibits different performance gains on different structures.
SPLD works best for asymmetric graphs. For example, com-
pared to , , which has the SPLD technique, improves
the time from 2.97 to 1.31 s (2.27 times) for BCube(8,4), from
18.5 to 4.16 s (4.34 times) for FatTree(100), and from 6.33 to
1.07 s (5.92 times) for VL2(100,100), whereas it reduces the
time from 44603 to 8.88 s (5011 times) for DCell(6,3). This is
because the more asymmetric a graph is, the more likely that the
SPLDs of two nodes will be different. In our case, BCube is the
most symmetric structure since all the switches are interchange-
able, whereas DCell is the most asymmetric one since there are
only two automorphisms for a DCell.
We have also checked other combinations of the techniques,

such as selective splitting, candidate pruning via orbit plus can-
didate selection via SPLD, and selective splitting plus candi-
date selection via SPLD, etc. We leave the numerical results
and analysis in the Appendix. The results of all these combi-
nations confirm the above observations: Candidate pruning via
orbit is efficient for symmetric graphs, selective splitting works
well for sparse graphs, and candidate selection via SPLD im-
proves both techniques and has remarkable performance gain
for asymmetric graphs such as DCell.
Mapping for Incremental Expansion: For the evaluation

of on incremental expansion, we choose one expansion

TABLE V
CPU TIME OF MAPPING FOR DATA CENTER EXPANSION

Fig. 11. Peak memory usage for each mapping process.

scenario for each structure. Since BCube and DCell are recur-
sively defined, we expand them by increasing the level. For
FatTree and VL2, we expand them by increasing the number
of servers in each rack. The results are listed in Table V. We
find that all the mappings can be done efficiently. For BCube,
we extend BCube(8,3) to BCube(8,4) and finish the mapping
in 0.19 s. For FatTree, we expand partial FatTree(100), where
each edge switch connects to 25 servers, to complete Fat-
Tree(100), where each edge switch connects to 50 servers, and
take 0.47 s for mapping. For VL2, we expand VL2(50,100)
to VL2(100,100) and spend 0.24 s. For DCell, we extend
DCell(6,2) to DCell(6,3) and use 7.514 s. Finally, we check and
verify that keeps logical IDs for old devices unmodified.
Memory Overhead of Mapping: We observe the peak

memory usage during each mapping process. Fig. 11 shows the
results. It contains mapping from scratch on the biggest graph
of each structure in Table III and mapping for incremental ex-
pansion in Table V. Except for DCell(6,3), the mapping pro-
cesses (both mapping from scratch and mapping for incremental
expansion) for all other structures have very low memory usage
( 0.1 Gb). DCell(6,3) requires more memory than others be-
cause of its size, with 3.8 million vertices. However, a 1-Gb
peak memory usage is still a decent outcome. Overall, the re-
sults show that the mapping process is memory-efficient.

C. Estimated Time Cost on Autoconfiguration

Recall that in Section V, we have evaluated the time cost of
DAC on our BCube(8,1) test bed. In this section, we estimate
this time on large data centers via simulations. We use the same
parameters - (checking interval) and (timeout for CBP
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Fig. 12. Number of malfunctioning devices detected with increased number (percent) of selected anchor points.

TABLE VI
ESTIMATED TIME (ms) OF AUTOCONFIGURATION

broadcast) as in the implementation, and set - as 10 ms
and as 50 ms. We estimate the time cost for each of the five
phases, i.e., CCB, timeout, TC, mapping, and LD, as described
in Section V. In the simulations, device ID is a 48-b MAC ad-
dress and logical ID is set to 32 b, like an IP address. We as-
sume all the links are 1 Gb/s and all communications use the
full link speed. For each structure, we choose the smallest and
largest graphs in Table III for evaluation. The results are shown
in Table VI. From the table, we find that, except for DCell(6,3),
the autoconfiguration can be finished in less than 10 s. We also
find that for big topologies like BCube(8,4), DCell(6,3), Fat-
Tree(100), and VL2(100,100), the mapping time dominates the
entire autoconfiguration time. DCell(6,3) takes the longest time,
nearly 45 s, to do the mapping.While the CPU time for the map-
ping is only 8.88 s, the memory I/O time is 36.09 s. Here, we
use more powerful Linux servers than what we used in the im-
plementation, so the mapping here is relatively faster than that
in Section V.

D. Results for Malfunction Detection

Since malfunctions with degree change can be detected
readily, in this section we focus on simulations on the mis-
wirings where there is no degree change. We evaluate the
accuracy of our algorithm proposed in Fig. 8 in detecting
such malfunction. Our simulations are performed on all four
structures. For each one, we select a moderate size with tens
of thousands of devices for evaluation; specifically, they are
BCube(6,4), FatTree(40), VL2(20,100), and DCell(3,3). As we
know, miswirings without degree change are exceedingly rare,

and every such case requires at least four miswired devices.
Thus in our simulations, we randomly create five groups of such
miswirings with a total of 20 miswired nodes. In the output of
our algorithm, we check how many miswired nodes we have
detected versus the number (or percent) of anchor points we
have selected. We say a miswired node is detected only if there
is no normal node above it in the counter list. This is because
the administrators will rectify the miswirings according to our
list sequentially and stop once they come to a node that is not
really miswired.
Fig. 12 demonstrates the results. It clearly shows that the

number of detected malfunctions is increased with the number
of selected anchor points. In our experiments on all structure, we
can detect all the malfunctions with at most 1.5% of nodes se-
lected as anchor points. Interestingly, we find the counter values
of good nodes and those of bad nodes are well separated, i.e.,
there is a clear drop in the sorted counter value list. We also
find that for different structures, we need different numbers of
anchor points in order to detect all 20 miswired devices. For
example, in DCell we require as many as 500 pairs of nodes as
anchor points to detect all the malfuctions; in VL2, we need 350
pairs of nodes to detect them all. However, in BCube and Fat-
Tree, we only need 150 and 100 anchor points, respectively, to
detect all malfunctions. One reason for the difference is that our
selected DCell and VL2 networks are larger than BCube and
FatTree. Another reason is that different structures can result in
different false positives in .
At last, it is worth mentioning that the above malfunction de-

tection has been done efficiently. In the worst case, we used
809.36 s to detect all the 20 malfunctioning devices in DCell
from 500 anchor points. Furthermore, as mentioned before, the
calculations starting from different anchor points are indepen-
dent of each other and can be performed in parallel for further
acceleration.

VII. RELATED WORK

In this section, we review the work related to DAC. The dif-
ferences between DAC and other schemes in related areas such
as Ethernet and IP networks are caused by different design goals
for different scenarios.
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TABLE VII
NUMERICAL RESULTS FOR COMBINATIONS OF THE THREE SPEEDUP TECHNIQUES OVER DIFFERENT DATA CENTER STRUCTURES. 1—CANDIDATE PRUNING VIA

ORBIT; 2— SELECTIVE SPLITTING; 3—CANDIDATE SELECTION VIA SPLD

Data Center Networking: Portland [8] is perhaps the most
related work to DAC. It uses a distributed location discovery
protocol (LDP) for PMAC (physical MAC) address assign-
ment. LDP leverages the multirooted tree topology property
for switches to decide their levels since only edge switches
directly connect to servers. DAC differs from Portland in
several aspects: 1) DAC can be applied to arbitrary topologies,
whereas LDP only works for multirooted trees; 2) DAC fol-
lows a centralized design because it significantly simplifies the
protocol design in distributed systems, and furthermore, data
centers are operated by a single entity.
Plug-and-Play in Ethernet: Standing as one of the most

widely used networking technologies, Ethernet has the beautiful
property of “plug-and-play.” It is essentially another notion of
autoconfiguration in that each host in an Ethernet possesses a
persistent MAC address and Ethernet bridges automatically
learn host addresses during communication. Flat addressing
simplifies the handling of topology dynamics and host mobility
with no human input to reassign addresses. However, it suffers
from scalability problems. Many efforts, such as [28]–[30],
have been made toward a scalable bridge architecture. More re-
cently, SEATTLE [31] proposes to distribute ARP state among
switches using a one-hop DHT and makes dramatic advances
toward a plug-and-play Ethernet. However, it still cannot well
support large data centers since: 1) switch state grows with
end-hosts; 2) routing needs all-to-all broadcast; 3) forwarding
loop still exists [8].
Autoconfiguration in IP Networks: Autoconfiguration proto-

cols for traditional IP networks can be divided into stateless and
stateful approaches. In stateful protocols, a central server is em-
ployed to record state information about IP addresses that have
already been assigned. When a new host joins, the servers allo-
cate a new, unused IP to the host to avoid conflict. DHCP [3]
is a representative protocol for this category. Autoconfiguration
in stateless approaches does not rely on a central server. A new

node proposes an IP address for itself and verifies its uniqueness
using a duplicate address detection procedure. For example, a
node broadcasts its proposed address to the network, and if it
does not receive any message showing the address has been oc-
cupied, it successfully obtains that address. Examples include
IPv6 stateless address autoconfiguration protocol [32] and IETF
Zeroconf protocol [33]. However, neither of them can solve the
autoconfiguration problem in new data centers where addresses
contain locality and topology information.

VIII. CONCLUSION

In this paper, we have designed, evaluated, and implemented
DAC, a generic and automatic Data center Address Configu-
ration system. To the best of our knowledge, this is the first
work in address autoconfiguration for generic data center net-
works. At the core of DAC is its device-to-logical ID mapping
and malfunction detection. DAC has made an innovation in ab-
stracting the device-to-logical ID mapping to the graph isomor-
phism problem and solved it in low time complexity by lever-
aging the sparsity and symmetry (or asymmetry) of data center
structures. TheDACmalfunction detection scheme is able to de-
tect various errors, including the most difficult case where mis-
wirings do not cause any node degree change.
Our simulation results show that DAC can accurately find all

the hardest-to-detect malfunctions and can autoconfigure a large
data center with 3.8 million devices in 46 s. In our implemen-
tation on a 64-server BCube test bed, DAC has used less than
300 ms to successfully autoconfigure all the servers. Our im-
plementation experience and experiments show that DAC is a
viable solution for data center network autoconfiguration.

APPENDIX

We show the numerical results for combinations of the three
speedup techniques in Table VII. The information delivered
from the table is consistent with Section VI-B.
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• Candidate pruning via orbit is very efficient for symmetric
graphs. For example, BCube is the most symmetric one of
all the evaluated structures, and the other technique combi-
nations without candidate pruning via orbit all take longer
time for BCube.

• Selective splitting is very efficient for sparse graphs. For
example, we can see that with only selective splitting, over
the structures with a similar number of nodes, we have
relatively better results for DCell and VL2 (because they
are sparser), but relatively worse performance for BCube
and Fattree (because they are denser).

• Candidate selection via SPLD generally works together
with the other two techniques and can further improve
the performance when added, and the performance gain is
more obvious for asymmetric graphs such as DCell.

In the table, we do not consider the base algorithm without
any speedup technique because it is extremely slow. We also
note that we introduce the technique of candidate selection via
SPLD to work with the other two techniques. When using only
this technique, the improvement over the baseline algorithm
is quite limited for symmetric graphs such as BCube. In fact,
the improvement from candidate pruning via orbit to candi-
date pruning via orbit plus candidate selection via SPLD for
BCube is mostly around two times in our experiments. This is
because in very symmetric graphs, many devices have the same
SPLDs. We therefore do not further explore SPLD as a stand-
alone speedup technique.
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