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Ubiquitous cellular networks connect everyone,
everything
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The race to 5G opens many new opportunities

The Next Frontier: 5G to Hit the Mainstream by 2022

Forecast of 5G wireless subscriptions by region (in millions)
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Yet, access to mobile network analytics is barred
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Yet, access to mobile network analytics is barred

What'’s going on in the 3G/4G/5G network??

Cellular network (4G LTE)

AN
Researcher

(you) 3G/4G operations remain closed both in device chipsets
and network infrastructures :(
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Plus, mobile networks are complex & distributed

More complex functions on both control and data planes

Operations are distributed across layers
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Moreover, analytics tasks are app specific

Analytics for mobile networks is problem-specific, for example:
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* Web browsers:
+ Why the time-to-first-byte (TTFB) is so long?

+ What's the major component of latency?

+ ..

* [nstant message apps:

+ Does the recipient read my message? ’ @
+ Is my message delivered in time? ‘

+ ..
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State-of-the-art mobile network analytics

Current 4G network analytics is primarily “infrastructure-based™:

Not Scalable Incomplete View
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State-of-the-art mobile network analytics

Current 4G network analytics is primarily “infrastructure-based™:
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ML-based approach is a must-have feature for mobile

network analytics

Device-centric ML approach brings new hope
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It is probably true that machine learning is a must-have approach,
rather than a nice-to-have one, to our field for mobile network analysis
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* Via ML-assisted data plane prediction from control plane protocol reconstruction




Our proposal: two-level device-centric ML approach

Local level: sensing mobile network data inside each smartphone

* Via hardware-software coordination (e.g. Mobilelnsight [ACM MobiCom'16])
* Via higher-layer (application/transport/IP) and lower-layer (cellular-specific) integration

* Via ML-assisted data plane prediction from control plane protocol reconstruction

Global level:

* Crowdsourcing-based dataset

* Cloud-synthesized insights
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Local analysis

Step 1: open up the “black-box™ operations
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Preprocessing ML analysis Application Stack
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Global analysis

Enabled by cloud-based crowdsourcing (e.g. cniCloud [HotWireless’17])

Analytical Insights for:

Fine-grained
» Geographical location logging & sharing;

* QOperators

Efficient Data
Management

* Phone models

Structured

Query SQL Response




Case study: latency analysis In
mobile networks

- UCLA -



Every millisecond of latency matters!

. Kissmetrics Blog
Mobile network users want fast access

Built to optimize growth. Track, analyze and engage to get more customers.

* 71 second latency in page response — 7% reduction

How Loading Time Affects Your Bottom

in PageView [KissMetrics 2011] e FCMPANY eeeeeeee )
S — 0
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go;m One Second Could Cost Amazon $1.6 Billion In
ales

Developers lose revenue due to long latency

Research on U.S. Net habits suggests that if this sentence takes longer than a second to
load, many citizens will have clicked elsewhere already. If you've got the patience (or are
European) read on for more shocking data on not dawdling.

° Google Research Blog

The latest news from Research at Google

* Every 100 ms costs Amazon 1% ($1.6 bn) in sales

o
* An extra 400 ms latency drops daily Google o
in

searches per user by 0.6% o

Latency does matter a lot!

Speed Matters
Tuesday, June 23, 2009
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Background: how do mobile apps work over 4G LTE?
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What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?

Cellular network (4G LTE)

LTE control-plane operations pose sizable latency on mobile apps
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Timing breakdown of control plane operations
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Learning latency: latency data sensing

Three-tiered timing data collection:

» App-specific semantic timing (e.g. Navigation Timing API, IM timing model)
e TCP/IP stack timing (from TCPDUMP)
* LTE stack timing (from Mobilelnsight)

unloadEventStart doma;nLookupStart requeststart domInteractive
domainLookupEnd responseStart
fetchStart connectStart responseEnd loadEventEnd
& "//F__connectEnd &
Y \ v

OS DNS : HTTP HTTP Page
overhead || query TCP connection request || transmission || rendering
TCP layer TCP SYN ‘l SYN ACK TCP data

LTE control plane
LTE data plane LTE data




Challenge: timestamp alignment

How to align timestamps at these layers?

* Domain-specific event tracing and mapping

* Machine-learning assisted

LTE Base Web
App TCP/IP chipset station server
network request
Tapp \M
thpdump I .
FTEL T LTE control >
A / plane msgs " |
|§gp tcpdump 4---"""""
log Mobilelnsight —————
log LTEdata .| . ———»
plane pkts : W
network response 4/4/
S |
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Pinpoint latency bottleneck in LTE: An example

Run a small webpage (4 KB) in Chrome on Android

» User is static, under good 4G LTE signal (-95 dBm), T-Mobile

Total Latency: 473 msec

* Clicking URL — page loading complete, Steps (a)—(f)

Pinpointing the latency bottleneck

* How to breakdown?
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Control-plane latency breakdown: local analysis |

Major component from Navigation Timing API: DNS lookup, 250 ms out of 473 ms
Is the DNS server slow to handle connection?

Further breakdown: LTE service request takes 172 ms before the DNS setup

Queueing D
Stalled

DNS Lookup

nitial Connection
Request Sent
Waiting (TTFB)
Content Download

l LTE service request

LTE Data Access Latency

_______________

.

8.98 ms
2.97 ms
250.04 ms
30.11 ms
0.36 ms
137.41 ms




Data-plane latency breakdown: local analysis ||

Further zoom in and breakdown the remaining LTE data access latency (291 ms):

DNS-Wait Grant &N 26 MsS

DNS (IPv6) - 17 ms

DNS-Wait Grant . 12ms

DNS (IPv4) . 16ms

APP-OS overhead l 2.02 ms

TCP SYN-Wait Grant 11 ms

TCP SYN-Send Data D 18 ms

TCP ACK (local processing) [ 0.02 ms

HTTP GET (send request) ] 0.36 ms

HTTP GET-Wait Grant . 12ms

HTTP GET-req sent - 8ms

HTTP-server RTT+ DL latency | 110 ms
| TE-to-TCP overhead l 6.1 ms
HTTP page DL transmission First bit of /[

HTTP DL retransmission

HTTP response

]40 ms

BSms
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Example: data plane suspension due to radio reconnection and head-of-line
blocking during handover
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Example: data plane suspension due to radio reconnection and head-of-line
blocking during handover

Blocking B
Request Sent

Waiting Grant §
Uplink Transmission -
Handover Disruption — No data
Handover Disruption — Duplicate recv’d data |

Waiting (TTFB, due to parallel TCP connection) |
Content Download

Q




Machine learning scheme

We leverage domain-specific knowledge for ML-based predictions

Control plane: predict handover using a decision tree classifier

Features from 3GPP standards

rre_mobility <= 0.5
gim = 0.002
samples = 376480
value = [75276.4, 78 4)

Predicts handover 100ms before it occurs with >99% accuracy

AY
'l‘ux, ~ralse

y -
rre_measreport <= 0.5
g1 = 0,001
samples = 376433
value = [75275.6, 44.0]

tid <= 215

g = 0,044
samples = 47
value = [0.8, 34.4)
I

AN
! L] BN
g =-0.0
samples = 43
value = [0.0, 34 4]

rre_handover <= 0.5
g = 0.0
samples = 376291
value = [75257.6, 2.4)

msg_len <= 13.0
g = 0.422
samples = 142
value = [18.0, 41.6)

gt = 0.0
samples = 4
value = [0.8, 0.0]

Data plane: predict NACK/ACK flip at MAC layer

7
L [
2ini = 0.0 radio bearerid <= 1.5 log_msg len <= 40.5 - peid <= 1.5
samples = 376273 gini = 0.494 gini = 0.488 gini = 0,142
value = [75254.6, 0.0) samples = 18 samples = 110 samples = 32
B value = [3.0, 2 4] value = [16.4, 22 4] value = [1.6, 19.2]
7/ . I
/ [} P N\ [] -~
gini = 0.32 gini = 0.0 log_msg _len<=365 | | log_nug_len <= 86.0 msg_len <=20.5 log_msg_len <= 51.5
- o _ . g = 0.438 g = 0,386 g = 0.444 g =0.115
samples = 6 samples = 12 - - - -

value = [0.6, 2.4]

value = [2.4,0.0]

samples = 73
value = [9.6, 20.0]

samples = 37
value = [6.8, 2.4)

i

samples = 3
value = [0.4, 0.8]

r

)

samples = 29
value = [1.2, 18.4)

<

.« —
id<=15 ' id<=15 £ A ' RN
c':m =‘0 49'8 g =0.178 ;(;u =‘0 33'9 gini = 0.494 g =-0.0 gm =00 gim = 0.098 gim = -0.0
sbamples = 50 samples = Jf samples = 31 samples = 6 samples = 2 samples = 1 samples = 28 sampl«-\‘: 1
value = 8.2, 7.2) value = [1.4, 12.8] value = [5.8, 1.6] value = [1.0, 0.8) value = [0.4, 0.0) value = [0.0, 0.8) value = [1.0, 18.4) value = [0.2, 0.0)
g
N N
’ A y A
g = 0,463 g =05 g =0.0 g = 0.375
samples = 16 samples = 34 samples = 5 samples = 26
value = [2.8, 1.6] value = [5.4, 5.6] value = (1, 0] value = [4.8, 1.6]
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Synthesizer: global crowdsourcing analysis

Four US carriers + Google Project Fi
23 phone models, 95,057 data sessions

Overall latency: 77 — 2956 ms in 500K samples

* Varies among different mobile carriers

200
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50

Average Latency by LTE Data
Access Setup (no mobility)

AT&T T-mobile Sprint VerizonProject Fi




Synthesizer: global crowdsourcing analysis

Four US carriers + Google Project Fi

3,000
23 phone models, 95,057 data sessions

p—d
-
-
-

Overall latency: 77 — 2956 ms in 500K samples
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LTE data access latency: how frequent?

Frequent data access setup operations

» every 58.8 sec (median); 133.6 sec (average)

* cause: frequently entering power-saving mode

Short-lived Radio connectivity lifetime

» every 10.8 sec (median); 17.3 sec (average)

 cause: inactivity timer (regulated by standards)
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Short-lived Radio connectivity lifetime
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LTE data access latency: how frequent?

100

Frequent data access setup operations ol (440.25, 95%)
. X 60 :

every 58.8 sec (median); 133.6 sec (average) = i 58.85 5?%) %

» cause: frequently entering power-saving mode ol )

.
OO 200 400 600 800 1,000

Time (s)

Short-lived Radio connectivity lifetime

(a) CDF for consecutive request interval

» every 10.8 sec (median); 17.3 sec (average) 100
80 [
* cause: inactivity timer (regulated by standards) <60 |
540

O
20 y
0 :

SN |
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Time (s)
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(b) Radio connectivity lifetime




Overall latency and breakdown for major carriers
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Findings Summary

Tradio: Radio connectivity setup

* [t contributes 67.5 -1665.0 ms of the overall LTE access latency.

* On average, it contributes 39.7%, 44.0%, 61.9%, 64.2% and 43.7% of total latency in T-Mobile,
AT&T, Verizon, Sprint and Project-Fi, respectively.

Tctrl: Connectivity state transfer

* |t contributes 28.75 ms to 2286.25ms of the overall LTE access latency.

* On average, it contributes 60.3%, 56.0%, 38.1%, 35.8% and 56.3% of total latency in T-Mobile,
AT&T, Verizon, Sprint and Project-Fi, respectively.




Impact on mobile Web app: Chrome

Average page loading time for tested webpage: 411 ms

 |TE data access setup: 174 ms

* 42.3% total latency perceived

Similar results for Safari latency on iI0S

unloadEventStart domainLookupStart requeststart domInteractive 800 | |
domainLookupEnd responseStart Total latency
fetchStart connectStart responseEnd loadEventEnd
/ connectEnd I & + o 600 | B LTE latency
&)
0S DNS : HTTP HTTP Page N
overhead || query TGP connection request || transmission | rendering 8 400 -
O
+~
v
—

/
TCP layer TCP SYN ‘SYN ACK TCP data | 200
LTE control plane
____________________ O
| LTE data | 0 20 50 75 100

Normalized sorted sample (%)

LTE data plane




Impact on instant-messaging: WhatsApp

Average time first data packet being ACKed: 341 ms

 |TE data access setup: 175 ms

* 51.4% total latency perceived

App init App connect New message Server ACK Next 800 | |
w/ server idle message Total latency
¢ Latency . [TE |
v v— A — Cé 600 |- L] atency -
OS DNS : TCP || SSL || TCP ~—
o | TCP connection | --- SSL Data ACK | Datall Ack |- >
-
TCP layer SYN ‘SYN ACK TCP data =
—
LTE data plane LTE data 0 0 25 50 75 100

Normalized sorted sample (%)

- UCLA -



Discussion: reducing LTE latency

Data plane walk-arounds

* Mask the data setup latency by waking device in connected mode in advance

Control plane acceleration

» Speed up connectivity state transfer between the base station and the mobility controller (e.g. DPCM [ACM
MobiCom’17])

» Handover prediction

Other issues

» Extending to other network metrics (e.g. loss, throughput, ...)

 Theoretical bounds

* Privacy issues




Conclusion: ML-based analysis for next-gen mobile

networks

32

Mobile networks are successful and will continue to prosper (5G, self driving, ...)

Mobile network analysis: paradigm shift to device-centric, ML-based scheme

* Device-centric: unveil the tightly-guided operation issues over 4G/5G mobile networks

* Two-tiered approach: a more open solution approach for the research community
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