
1

FiConn: Using Backup Port for Server
Interconnection in Data Centers

Dan Li∗, Chuanxiong Guo∗, Haitao Wu∗, Kun Tan∗, Yongguang Zhang∗, Songwu Lu†

∗Microsoft Research, Asia, †University of California, Los Angeles

Abstract— The goal of data center networking is to intercon-
nect a large number of server machines with low equipment
cost, high and balanced network capacity, and robustness to
link/server faults. It is well understood that, the current practice
where servers are connected by a tree hierarchy of network
switches cannot meet these requirements [8], [9].

In this paper, we explore a new server-interconnection struc-
ture. We observe that the commodity server machines used in
today’s data centers usually come with two built-in Ethernet
ports, one for network connection and the other left for backup
purpose. We believe that, if both ports are actively used in
network connections, we can build a low-cost interconnection
structure without the expensive higher-level large switches. Our
new network design, called FiConn, utilizes both ports and only
the low-end commodity switches to form a scalable and highly
effective structure.

Although the server node degree is only two in this structure,
we have proven that FiConn is highly scalable to encompass
hundreds of thousands of servers with low diameter and high
bisection width. The routing mechanism in FiConn balances
different levels of links. We have further developed a low-
overhead traffic-aware routing mechanism to improve effective
link utilization based on dynamic traffic state. Simulation results
have demonstrated that the routing mechanisms indeed achieve
high networking throughput.

I. INTRODUCTION

Data center networking designs both the network structure
and associated protocols to interconnect thousands of [8] or
even hundreds of thousands of servers [1], [2], [3] at a data
center, with low equipment cost, high and balanced network
capacity, and robustness to link/sever faults. Its operation is
essential to offering both numerous online applications, e.g.,
search, gaming, web mail, and infrastructure services, e.g.,
GFS [5], Map-reduce [6] and Dryad [7]. It is well understood
that tree-base solution in current practice cannot meet the
requirements [8], [9].

In this paper, we study a simple technical problem: Can
we build a scalable, low-cost network infrastructure for data
centers, using only the commodity servers with two ports
and low-end, multi-port commodity switches? If we can solve
the problem, the potential benefits are multi-faceted. First,
building a data center network becomes relatively easy. We
do not need high-end, expensive switches, which are widely
used today. Standard, off-shelf servers with two ports (one for
operation in network connection, the other for backup) are
also readily available. Second, it may spawn more academic
research into data centers. New problems and solutions in data
center networking, systems, and applications can be found,
implemented and assessed through an easy-to-build testbed

at a university or institution. Today, data center infrastructure
may only be afforded by a few cash-rich companies such as
Microsoft, Google, and Yahoo. Finally, data center technology
may become pervasive in campus, small- to medium-sized
enterprise, and big companies.

Neither current practice nor recent proposals [8], [9] can
solve our problem. The tree-based solution requires expensive,
high-end switches at the top level of the tree, in order to
alleviate the bandwidth bottleneck. The scaling of the Fat-Tree
solution [8] is limited to the number of ports at a switch, and
it also needs more switches. DCell [9] typically requires more
ports per server, e.g., 4, to scale to a large server population.
The fundamental problem is that, we need to design a new
network structure that works for servers with node degree of
only two in order to scale.

In this paper, we propose FiConn, a scalable solution that
works with servers with two-ports only and low-cost com-
modity switches. FiConn defines a recursive network structure
in levels. A high-level FiConn is constructed by many low-
level FiConns. When constructing a higher-level FiConn, the
lower-level FiConns use half of their available backup ports
for interconnections and form a mesh. This way, the number
of servers in FiConn, N , grows double-exponentially with
FiConn levels. For example, if 48-port switches are used, a
2-level FiConn can support 361,200 servers. The diameter
of FiConn is O(logN), which is small and can thus support
applications with real-time requirements. The bisection width
of FiConn is O(N/logN), showing that FiConn may well
tolerate port/link faults. Although we use the backup port of
each server, the server’s reliability is not compromised because
it still uses the other port when one fails.

Routing over FiConn is also renovated in two aspects. First,
our routing solution balances the usage of different levels of
links. Second, FiConn uses traffic-aware routing to improve
effective link utilization based on dynamic traffic state. In the
traffic-aware routing, considering the large server population,
we use no central server(s) for traffic scheduling, and do not
exchange traffic state information among even neighboring
servers. Instead, the traffic-aware path is computed hop-by-hop
by each intermediate server based on the available bandwidth
of its two outgoing links. Simulation results show that our
traffic-aware routing achieves much higher throughput for
burst traffic between two subsets of FiConn severs, which is
common for data center applications such as Map-Reduce.

In summary, we make two main contributions in FiConn.
First, FiConn offers a novel network structure that is scalable
with servers of node-degree two and has low diameter and



2

high bisection width. FiConn places more intelligence into
end-servers while minimizing the complexity at the switch.
Therefore, FiConn is able to scale with commodity switches
and off-the-shelf servers. Second, FiConn uses traffic-aware
routing that exploits the available link capacities based on
traffic dynamics and balances the usage of different links to
improve the overall network throughput. Of course, FiConn of-
fers these appealing features at additional overhead compared
with the tree structure in current practice. Wiring cost is higher
since each server has only two Ethernet ports. Besides, servers
consume more CPU resources in packet forwarding in FiConn.
This overhead is not an issue over time as more servers use
multi-core CPUs.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III describes the physical
structure of FiConn and the basic routing on top of it. Section
IV presents the traffic-aware routing protocol in FiConn.
Section V uses simulations to evaluate the routing in FiConn.
Finally, Section VI concludes this paper.

II. RELATED WORK

A. Interconnection Structure for Data Centers

We now discuss three interconnection structures proposed
for data centers, the current practice of the tree-based structure,
and two recent proposals of Fat-Tree [8] and DCell [9].

In current practice, servers are connected by a tree hierarchy
of network switches, with commodity switches at the first-level
and increasingly larger and more expensive switches at the
higher levels. It is well known that this kind of tree structure
has many limitations [8], [9]. The top-level switches are the
bandwidth bottleneck, and high-end high-speed switches have
to be used. Moreover, a high-level switch shows as a single-
point failure spot for its subtree branch. Using redundant
switches does not fundamentally solve the problem but incurs
even higher cost.

Figure 1 illustrates the topology of Fat-Tree solution, which
has three levels of switches. There are n pods (n = 4 in the
example), each containing two levels of n/2 switches, i.e., the
edge level and the aggregation level. Each n-port switch at the
edge level uses n/2 ports to connect the n/2 servers, while
uses the remaining n/2 ports to connect the n/2 aggregation-
level switches in the pod. At the core level, there are (n/2)2

n-port switches and each switch has one port connecting to
one pod. Therefore, the total number of servers supported by
the Fat-Tree structure is n3/4. Given a typical n = 48 switch,
the number of servers supported is 27,648.

FiConn differs from Fat-Tree in several aspects. First,
FiConn puts the interconnection intelligence on servers rather
than on switches. There are three levels of switches in Fat-
Tree, but only one lowest-level in FiConn. Hence, the number
of used switches are much smaller in FiConn. Consider the
total number of servers as N and n-port switches being used.
The number of switches needed in Fat-Tree is 5N/n, while
the number in FiConn is N/n. Therefore, FiConn reduces the
cost on switches by 80% compared with Fat-Tree. Second,
the number of servers Fat-Tree supports is restricted by the
number of switch ports. FiConn does not have this limitation

Fig. 1. A Fat-Tree structure with n = 4. It has three levels of switches.

Fig. 2. A DCell1 structure with n = 4. It is composed of 5 DCell0s.

and extends to a very large number of servers, each of which
has a node degree of two. Third, Fat-Tree depends on central
server(s) for traffic scheduling, but traffic-aware routing in
FiConn computes the routing path in a distributed manner with
little control overhead.

DCell is a new, level-based structure [8] as illustrated in
Figure 2. In DCell0, n servers are connected to a n-port
commodity switch. Given t servers in a DCellk, t+1 DCellks
are used to build a DCellk+1. The t servers in a DCellk connect
to the other t DCellks, respectively. This way, DCell achieves
high scalability and high bisection width.

FiConn and DCell share the same design principle to
place the interconnection intelligence onto servers. They are
different in several aspects. First, the server node degree in
a DCellk is k + 1, but that of FiConn is always two. As
a result, FiConn just needs to use the existing backup port
on each server for interconnection, and no other hardware
cost is introduced on a server. Second, the wiring cost in
FiConn is less than that of DCell because each server uses
only two ports. Third, routing in FiConn makes a balanced
use of links at different levels, which DCell cannot. Finally,
traffic-aware routing in FiConn is further designed to exploit
the link capacities according to current traffic state.

One downside of FiConn compared with Fat-tree and DCell
is that FiConn has lower aggregate networking capacity. Fat-
Tree achieves non-block communication between any pair of
servers [8], and DCell has more ports on a server for routing
selection. In fact, the lower networking capacity of FiConn
results from the less number of links, which is the tradeoff of
easy wiring. Moreover, routing in FiConn makes a balanced
use of different levels of links, and is traffic-aware to better



3

utilize the link capacities.

B. Interconnection Structures in Other Areas

Besides in data centers, interconnection structures are
widely studied in various areas such as parallel computing
[14], [15], [16], on-chip network [13], and switching fabric
[17]. Proposed structures include Ring [16], HyperCube [11],
[12], Butterfly [15], Torus [16], De Bruijin [18], Flattened
Butterfly [19] and DragonFly [20].

Among these structures, only Ring has the server node
degree of two, which is similar to FiConn. However, the
diameter of Ring is N/2 and the bisection width is 2, where N
is the total number of nodes. Undoubtedly, Ring is not viable
for server interconnection in data centers even when N is very
small, e.g., less than 100. As for the other structures, they are
much more expensive to build a data center and the wiring
effort is also much higher compared with FiConn.

III. FICONN: A NOVEL INTERCONNECTION STRUCTURE
FOR DATA CENTERS

In this section, we present our FiConn physical structure
and design the basic routing algorithm on top of FiConn.

A. Physical Structure

FiConn is a recursively defined structure. A high-level Fi-
Conn is constructed by many low-level FiConns. We denote a
level-k FiConn as FiConnk. FiConn0 is the basic construction
unit, which is composed of n servers and an n-port commodity
switch connecting the n servers. Typically, n is an even
number such as 16, 32, or 48. Every server in FiConn has
one port connected to the switch in FiConn0, and we call this
port level-0 port. The link connecting a level-0 port and the
switch is called level-0 link. Level-0 port can be regarded as
the original operation port on servers in current practice. If the
backup port of a server is not connected to another server, we
call it an available backup port. For instance, there are initially
n servers each with an available backup port in a FiConn0.

Now we focus on how to construct FiConnk (k > 0) upon
FiConnk−1s by interconnecting the server backup ports. If
there are totally b servers with available backup ports in a
FiConnk−1, the number of FiConnk−1s in a FiConnk, gk, is
equal to b/2 + 1. In each FiConnk−1, b/2 servers out of the b
servers with available backup ports are selected to connect the
other b/2 FiConnk−1s using their backup ports, each for one
FiConnk−1. The b/2 selected servers are called level-k servers,
the backup ports of the level-k servers are called level-k ports,
and the links connecting two level-k ports are called level-k
links. If we take FiConnk−1 as a virtual server, FiConnk is in
fact a mesh over FiConnk−1s connected by level-k links.

We can use a sequential number, uk, to identify a server
s in FiConnk. Assume the total number of servers in a
FiConnk is Nk, there is 0 ≤ uk < Nk. Equivalently, s
can be identified by a (k + 1)-tuple, [ak, ..., a1, a0], where
a0 identifies s in its FiConn0, and al (1 ≤ l ≤ k) identifies
the FiConnl−1 comprising s in its FiConnl. Obviously, there
is uk = a0 +

∑k
l=1(al ∗Nl−1). For ease of expression, s can

also be identified by [ak, uk−1], [ak, ak−1, uk−2], and etc.

Algorithm 1 shows the construction of a FiConnk (k > 0)
upon gk FiConnk−1s. In each FiConnk−1 (Line 2), the servers
satisfying (uk−1 − 2k−1 + 1) mod 2k == 0 are selected as
level-k servers (Line 3), and they are interconnected as Lines
4-6 instruct.

01 FiConnConstruct(k){
02 for(i1 = 0; i1 < gk; i1 + +)
03 for(j1 = i1 ∗ 2k + 2k−1 − 1; j1 < Nk−1; j1 = j1 + 2k)
04 i2 = (j1 − 2k−1 + 1)/2k + 1
05 j2 = i1 ∗ 2k + 2k−1 − 1
06 connect servers [i1, j1] with [i2, j2]
07 return
08 }

Algorithm 1: Constructing FiConnk upon gk FiConnk−1s.

We take Fig.3 as an example to illustrate the FiConn
interconnection rule, in which n = 4 and k = 2. FiConn0

is composed of 4 servers and a 4-port switch. The number of
FiConn0s to construct FiConn1 is 4/2 + 1 = 3. The servers
[0, 0], [0, 2], [1, 0], [1, 2], [2, 0] and [2, 2] are selected as level-1
servers and we connect [0, 0] with [1, 0], [0, 2] with [2, 0], and
[1, 2] with [2, 2].

In each FiConn1, there are 6 servers with available backup
ports, so the number of FiConn1s in a FiConn2 is 6/2+1 = 4.
We connect the selected level-2 servers as follows, [0, 0, 1]
with [1, 0, 1], [0, 1, 1] with [2, 0, 1], [0, 2, 1] with [3, 0, 1],
[1, 1, 1] with [2, 1, 1], [1, 2, 1] with [3, 1, 1], and [2, 2, 1] with
[3, 2, 1].

FiConn has several nice properties which we discuss as
follows.

Theorem 1: If we denote the total number of servers in a
FiConnk as Nk, there is Nk ≥ 2k+2 ∗ (n/4)2

k

(for n > 4),
where n is the number of servers in FiConn0.

Proof: Based on the interconnection rule, a FiConnk−1

has Nk−1/2k−1 servers with available backup ports. When it
is used to construct FiConnk, half of the servers with available
backup ports are selected as level-k servers to connect other
FiConnk−1s. Hence, there is gk = Nk−1/2k + 1. We have:

Nk =
{

n, if k = 0
Nk−1 ∗ gk = Nk−1 ∗ (Nk−1/2k + 1), if k > 0

We validate the correctness of Theorem 1.
i) If k = 0, there is N0 = 4 ∗ (n/4) = n.
ii) If Nk−1 ≥ 2k+1∗(n/4)2

k−1
, then we have Nk = Nk−1∗

(Nk−1/2k + 1) ≥ N2
k−1/2k ≥ 22k+2 ∗ (n/4)2

k

/2k = 2k+2 ∗
(n/4)2

k

.
Fig.4 illustrates the total number of servers in FiConn versus

the level k. We use log10(log10Nk) in y axis. The figure shows
clearly the linear relationship between log10(log10Nk) and k,
which implies that Nk grows double-exponentially with k. For
a typical value of n = 48 and k = 2, the number of servers
in FiConn is 361,200. If we choose n = 16 and k = 3, the
number becomes 3,553,776.

Theorem 2: The average server node degree in FiConnk is
2− 1/2k.

Proof: Assume there are totally Nk servers in FiConnk.
All servers have one level-0 link. In addition, Nk/2i servers



4

Fig. 3. A FiConn2 with n = 4. The FiConn2 is composed of 4 FiConn1s, and each FiConn1 is composed of 3 FiConn0s. A level-0 link connects one server
port (the original operation port) to a switch, denoted by dot-dashed line. A Level-1 or Level-2 link connects the other port (the original backup port) of two
servers, denoted by solid line and dashed line respectively. The path from [0,2,1] to [1,2,1] using TOR is ([0,2,1], [0,2,0], [0,0,2], [0,0,1], [1,0,1], [1,0,2],
[1,2,0], [1,2,1])

have a level-i link (1 ≤ i ≤ k). As a result, the average
server node degree in FiConnk is (Nk +

∑k
i=1(Nk/2i))/Nk =

2− 1/2k.
Theorem 2 tells that the average server node degree of

FiConn approaches to 2 when k grows, but never reaches 2.
In other words, FiConn is always incomplete in the sense that
there are always servers with available backup ports in it. In
fact, it is just the incompleteness characteristic of FiConn that
makes it highly scalable with the server node degree of two.

Theorem 3: Suppose Ll denote the number of level-l links
in FiConnk, there is

Ll =
{

4 ∗ Ll+1, if l = 0
2 ∗ Ll+1, if 0 < l < k

Proof: First we prove L0 = 4 ∗L1, and we only need to
prove that it holds in a FiConn1. Each server in a FiConn1 has
one level-0 link, so there is L0 = N1. Half of the servers in
FiConn1 are selected as level-1 servers and every two level-1
servers share one level-1 link. Hence, we have L1 = N1/4.
As a result, there is L0 = 4 ∗ L1.

Then we prove for any 0 < l < k, Ll = 2 ∗ Ll+1. Again,
we only need to prove that it holds in a FiConnl+1. In a
FiConnl, the number of level-l servers is Nl/2l and the number
of level-l links is thus Nl/2l+1. Hence in FiConnl+1, Ll =
gl+1 ∗Nl/2l+1. Similarly, the number of level-(l +1) links in
FiConnl+1 is Ll+1 = Nl+1/2l+2. Note that Nl+1 = gl+1 ∗Nl,
so we have Ll = 2 ∗ Ll+1.

The relationship among the numbers of links in different
levels disclosed in Theorem 3 matches the basic routing
designed below in FiConn, which is in favor of making a

0 0.5 1 1.5 2 2.5 3
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k

lo
gl

og
(N

)

n=8
n=16
n=32
n=48

Fig. 4. The relationship between the total number of servers N and the
FiConn level k. The y-axis is log10(log10Nk).

balanced use of FiConn links. It will be further explained in
the following subsection.

B. Traffic-Oblivious Routing

We design a Traffic-Oblivious Routing (TOR) algorithm in
FiConn which takes advantage of the level-based characteristic
of FiConn. For any pair of servers, if the lowest common level
of FiConn they belong to is FiConnl, the routing path between
them is constrained to the two FiConnl−1s comprising the two
servers respectively, and the level-l link connecting the two
FiConnl−1s. Hence, the routing path between two servers can
be recursively calculated.

Algorithm 2 shows how TOR works on a server s to route a
packet destined to dst. The function TORouting() returns the



5

next-hop server. First of all, the lowest common FiConn level
of s and dst is found based on their identifiers, say, l (Line 2).
If l is zero (Line 3), it means the destination server is within
the same FiConn0 as s, and the function returns dst (Line 4).
Next, we get the level-l link connecting the two FiConnl−1s
comprising s and dst respectively, say, (i1, i2) (Line 5). If i1
is s itself (Line 6), then i2 is returned (Line 7). Otherwise,
we recursively compute and return the next-hop server from
s towards i1 (Line 8).

/*s: current server.
dst: destination server of the packet to be routed.
*/
01 TORoute(s, dst){
02 l = lowestCommonLevel(s, dst)
03 if(l == 0)
04 return dst
05 (i1, i2) = getLink(s, dst, l)
06 if(i1 == s)
07 return i2
08 return TORoute(s, i1)
09 }

Algorithm 2: Traffic-oblivious routing (TOR) in FiConn.

Take Fig. 3 as an example. The path from source server
[0,2,1] to destination server [1,2,1] using TOR is ([0,2,1],
[0,2,0], [0,0,2], [0,0,1], [1,0,1], [1,0,2], [1,2,0], [1,2,1]), which
takes 7 hops.

From TOR, the number of level-l links (0 < l < k) in a
typical routing path in FiConnk is twice that of level-(l + 1)
links, and the number of level-0 links is four times that of
level-1 links (note that one hop in FiConn0 includes two links
since it crosses the switch). Meanwhile, Theorem 3 tells that
in FiConnk, the total number of level-l links (0 < l < k)
is twice that of level-(l + 1) links, and the number of level-0
links is four times that of level-1 links. Therefore, TOR makes
a balanced use of different levels of FiConn links, which helps
improve the aggregate throughput, especially in random traffic
pattern.

Leveraging TOR, we can calculate the diameter and bisec-
tion width of FiConn.

Theorem 4: The upper bound of the diameter of FiConnk

is 2k+1 − 1.
Proof: Using the TOR, the longest routing path between

any two serves in FiConnk takes 1 level-k hop, 2 level-(k−1)
hops, ... , 2k−1 level-l hops, ..., and 2k level-0 hops. Hence, the
upper bound of the diameter of FiConnk is 1 + 2 + ... + 2k =
2k+1 − 1.

In combination with Theorem 1, the diameter of FiConn
is O(logNk), where Nk is the total number of servers in
FiConnk. Obviously, the diameter of FiConn is small consid-
ering the total number of servers, benefiting applications with
real-time requirement.

Theorem 5: The lower bound of the bisection width of
FiConnk is Nk/(4 ∗ 2k), where Nk is the total number of
servers in FiConnk.

Proof: In all-to-all communication, the number of flows
on the FiConnk link that carries the most flows is about 2k ∗
Nk times of that in its embedding complete graph. Based on

[15], the lower bound of the bisection width of FiConnk is
1/(2k ∗Nk) times of that of complete graph, that is, (1/(2k ∗
Nk)) ∗ (N2

k/4) = Nk/(4 ∗ 2k).
Considering Theorem 1, the bisection width of FiConnk

is also O(Nk/logNk). The high bisection width of FiConn
implies that there are many possible paths between a pair of
servers. FiConn is therefore intrinsically fault-tolerant and it
provides the possibility to design multi-path routing on top of
it.

IV. TRAFFIC-AWARE ROUTING IN FICONN

TOR balances the use of different levels of FiConn links
and serves as the basis for FiConn routing. However, it has
two limitations. First, a pair of servers cannot leverage the two
ports on each to improve their end-to-end throughput in TOR.
Second, TOR cannot further utilize the available link capacities
according to dynamic traffic states to improve the networking
throughput. To overcome these limitations, we design Traffic-
Aware Routing (TAR) in FiConn.

A. Basic Design and Challenges

Because of the large server population in data centers, we
do not rely on central server(s) for traffic scheduling, nor
exchange traffic states among all the FiConn servers. Instead,
we seek to compute the routing path in a distributed manner
with little control overhead.

We take a greedy approach to hop-by-hop setup of the
traffic-aware path on each intermediate server. Each server
seeks to balance the traffic volume between its two outgoing
links. Specifically, the source server always selects the outgo-
ing link with higher available bandwidth to forward the traffic.
For a level-l (l > 0) intermediate server, if the outgoing link
using TOR is its level-l link and the available bandwidth of its
level-0 link is higher, its level-l link is bypassed via randomly
selecting a third FiConnl−1 in the FiConnl to relay the traffic;
otherwise, the traffic is routed by TOR.

When the level-l server s selects a third FiConnl−1 for
relay, a possible choice beyond the random selection is to
exchange traffic states among all the level-l servers within
each FiConnl−1, and s can then choose the third FiConnl−1

to which the level-l link has the highest available bandwidth.
However, we do not adopt this method because when l is
high, the number of level-l servers in a FiConnl−1 may be
too large. It incurs considerable overhead to exchange traffic
states with each other. One may argue that traffic states can
be exchanged within a smaller range, such as FiConn0 or
FiConn1. However, there may be few or no level-l servers in
such a range if l is high, and the candidate third FiConnl−1s
are consequently very limited. As a result, in our present
design we let server s randomly select a third FiConnl−1 in
the FiConnl for relay, which avoids traffic state exchange and
retains a large candidate set of third FiConnl−1s.

Note that our idea of TAR can be readily extended to handle
port/link faults, which may be common in large data centers.
When a port or a link fails, it is treated the same as that the
available bandwidth of the link becomes zero. The traffic will
always be routed via the other link of the server. In this sense,



6

Fig. 5. Illustration for routing path setup. There is already one flow in the
level-1 link from [2,0] to [0,2] and all other links carry no traffic. Now [2,1]
initiates a flow towards [0,1]. The path using TOR is ([2,1], [2,0], [0,2], [0,1]).
The path using TAR is ([2,1], [2,2], [1,2], [1,0], [0,0], [0,1]).

port/link fault management is just an extreme case for TAR.
The only modification is that, when a level-l server s receives
traffic from its level-l link but its level-0 link fails, s routes
the traffic back to its level-s neighboring server to bypass the
level-l link as if the level-l link fails.

To limit the control overhead, we do not compute the
traffic-aware path on a per packet basis. Instead, we target
on a per flow basis and dynamically setup the traffic-aware
path for a flow using a special path-probing packet. When
a flow is initiated on the source server, it is intercepted by
the FiConn routing module of the source server, and a path-
probing packet for the flow is sent out towards the destination
server. Each intermediate server routes the path-probing packet
based on local traffic states as stated above, and establishes
the routing entry for the flow, which includes the previous
hop and the next hop. When the destination server receives
the path-probing packet, it responds by sending another path-
probing packet back towards the source server, in which the
source and destination fields are exchanged, and the return
path is accordingly setup. After the source server receives the
replied path-probing packet, it sends out the corresponding
intercepted flow. Intermediate servers forward the flow based
on established routing entries. During the session time of a
flow, path-probing packets for the flow are periodically sent
out to update the routing path based on dynamic traffic states.

We illustrate the basic design of TAR via the example of
Figure 5. There is already one flow in the level-1 link from
[2,0] to [0,2] and all other links carry no traffic. Server [2,1]
now initiates a flow towards server [0,1]. The path using TOR
is ([2,1], [2,0], [0,2], [0,1]). In TAR, when [2,0] receives the
path-probing packet from [2,1], it discovers that its level-1
outgoing link to [0,2] has less available bandwidth than its
level-0 outgoing link. It then randomly selects a third FiConn0

in the FiConn1 for relay. In this case, FiConn0[1] is selected.
Finally the packet is routed to [0,1] by the relay of FiConn0[1].

To make the above idea work, we need to address several
challenges in TAR.

Routing back: When an intermediate server chooses to
bypass its level-l (l > 0) link and routes the path-probing
packet to a next-hop server in the same FiConn0, the next-hop

server may route the packet back using TOR. In the example
of Figure 5, when [2,2] receives the path-probing packet from
[2,0], it routes the packet back to [2,0] using TOR unless
otherwise specified.

Multiple bypassing: When one level-l (l > 0) link is
bypassed, a third FiConnl−1 is chosen as the relay and two
other level-l links in the current FiConnl will be passed
through. But the two level-l links may need to be bypassed
again according to the basic design. It may iteratively occur,
and routing in the FiConnl thus takes too long a path or even
falls into a loop. In the example of Figure 5, assume the level-1
link from [2,2] to [1,2] should also be bypassed because there
is a flow in it. Routing then gets trapped in a loop between
[2,0] and [2,2]. Solution is needed to limit the bypassing times
and avoid path loops.

Path redundancy: A redundant path implies that there are
intermediate servers to be removed from the path without
reducing the throughput of the path. In the example of Figure
5, [2,0] can be removed from the traffic-aware path and thus
[2,1] sends the packet to [2,2] directly.

Imbalance Trap: Assume that a level-l server s routes a
flow via its level-l outgoing link and there is no traffic in its
level-0 outgoing link. All subsequent flows that arrive from
its level-0 incoming link will bypass its level-l link because
the available bandwidth of its level-0 outgoing link is always
higher. In this case, the outgoing bandwidth of its level-l link
cannot be well utilized even though the other level-l links in
the FiConnl are heavily-loaded. In the example of Figure 5, all
subsequent flows from FiConn0[2] to FiConn0[0] will bypass
the level-1 link of [2,0]. In fact, the problem results from the
idea that TAR seeks to balance the local outgoing links of a
server, not links among servers. We call it an imbalance trap
problem and corresponding mechanism is demanded.

In the following three subsections, we address the first two
problems by Progressive Route (PR), the third problem by
Source ReRoute (SRR), and the last problem by Virtual Flow
(VF).

B. Progressive Route

Progressive Route (PR) solves both the routing back prob-
lem and the multiple bypassing problem by making the
intermediate servers aware of the routing context. When the
source server sends the path-probing packet, it adds a PR field
in the packet header and the PR field can be modified by
intermediate servers. PR field has m entries, where m is the
lowest common level of the source and destination servers.
We use PRl (1 ≤ l ≤ m) to denote the lth entry of PR
field. Each PRl plays two roles. First, when bypassing a level-
l link, the level-l server in the selected third FiConnl−1 is
chosen as the proxy server and is set in PRl. Intermediate
servers check the PR field and route the packet to the lowest-
level proxy server. Hence, the path-probing packet will not
be routed back. Second, PRl can carry information about the
bypassing times in the current FiConnl. If the number of
bypassing times exceeds a threshold, the packet jumps out
of the current FiConnl and chooses a third FiConnl for relay.
One can see that the higher the threshold of bypassing times is,



7

the more likely that the path-probing packet finds a balanced
path. But the tradeoff is the path length and probing time. In
the present design, we set the threshold as 1, which means
only one level-l link can be bypassed in a FiConnl.

Since the threshold of bypassing times is 1, we design two
special identifiers different from server identifiers for a PRl,
BYZERO and BYONE. BYZERO indicates no level-l link is
bypassed in the current FiConnl, so it is set in PRl when the
packet is initialized or after crossing a level-i link if i > l.
BYONE means there is already one level-l link bypassed in
the current FiConnl, and it is set in PRl after traversing the
level-l proxy server in the current FiConnl. PRl is set as the
identifier of the level-l proxy server between the selection of
the proxy server and the arrival to the proxy server.

Take Fig.5 as the instance. The source server [2,1] initializes
PR entries (in this case, m = 1) as BYZERO. When [2,0]
selects [1,2] as the level-1 proxy server, it modifies PR1 as
[1,2] and sends the packet to [2,2]. [2,2] checks the PR field,
finds [1,2] is the lowest-level proxy server, and sends the
packet towards [1,2] (in this case, [1,2] is just its neighboring
server). [1,2] receives the packet and finds PR1 is the identifier
of its own, so it modifies PR1 as BYONE before sending it to
the next hop [1,0]. Therefore, using PR, the traffic-aware path
in this example is ([2,1], [2,0], [2,2], [1,2], [1,0], [0,0], [0,1]).

C. Source ReRoute

As aforementioned, the server [2,0] can be removed from
the path using PR in the example above. We use Source
ReRoute (SRR) to achieve this. When a server s decides to
bypass its level-l (l > 0) link and chooses a proxy server, it
modifies the PR field and then routes the path-probing packet
back to the previous hop from which it received the packet.
Then the original intermediate servers from the source server
to s will all receive the path-probing packet from the next
hop for the flow in the routing table, and they just send the
packet to the previous hop for the flow in the routing table and
clear the corresponding routing entry. After the source server
receives the packet, it also clears the routing entry for the flow,
and reroutes the packet towards the lowest-level proxy server
in PR field.

In the example above, when [2,0] selects [1,2] as the level-
1 proxy server, it modifies PR1 as [1,2], and sends the path-
probing packet to the previous hop of this packet, [2,1]. [2,1]
checks the routing table, finding that it receives the packet
from the next hop of the flow it once routed to, which is an
indication of SRR processing; but the previous hop of the flow
is NULL, which implies that it is the source server. Therefore,
[2,1] clears the corresponding routing entry, checks that PR1 is
[1,2], and then selects [2,2] as the next hop. In this way, [2,0]
is removed from the path, and the traffic-aware path becomes
([2,1], [2,2], [1,2], [1,0], [0,0], [0,1]).

D. Virtual Flow

To alleviate the imbalance trap problem, we use Virtual
Flow (VF) to compare the available bandwidth between two
outgoing links. Virtual flows for a server s indicate the flows
that once arrive at s from its level-0 link but are not routed

/*s: current server.
l: the level of s. (l > 0)
RTable: the routing table of s, maintaining the previous hop
(.prevhop) and next hop (.nexthop) for a flow.
hb: the available bandwidth of the level-l link of s.
zb: the available bandwidth of the level-0 link of s.
hn: the level-l neighboring server of s.
vfc: virtual flow counter of s.
pkt: the path-probing packet to be routed, including flow id
(.f low), source (.src), destination (.dst), previous hop (.phop),
and PR field (.pr).
*/
01 TARoute(s, pkt){
02 if(pkt.dst == s) /*This the destination*/
03 return NULL /*Deliver pkt to upper layer*/
04 if(pkt.phop == RTable[pkt.flow].nexthop) /*SRR*/
05 nhop = RTable[pkt.flow].prevhop
06 RTable[pkt.flow] = NULL
07 if(nhop 6= NULL) /*This is not source server*/
08 return nhop
09 if(s == pkt.pr[l]) /*This is the proxy server*/
10 pkt.pr[l] = BYONE
11 ldst = getPRDest(pkt) /*Check PR for proxy server*/
12 nhop = TORoute(s, ldst)
13 if(s == pkt.src and nhop 6= hn and hb > zb)
14 nhop = hn
15 if(pkt.phop == hn and nhop 6= hn)

or (pkt.phop 6= hn and hb ≥ zb)
16 resetPR(pkt.pr, l)
17 RTable[pkt.flow] = (pkt.phop, nhop)
18 if(nhop 6= hn and vfc > 0)
19 vfc = vfc− 1 /*VF*/
20 return nhop
21 fwdhop = nhop
22 while(fwdhop == nhop)
23 fwdhop = bypassLink(s, pkt, l)/*Try to bypass*/
24 if(fwdhop == NULL) /*Cannot find a bypassing path*/
25 resetPR(pkt.pr, l)
26 RTable[pkt.flow] = (pkt.phop, nhop)
27 return nhop
28 vfc = vfc + 1 /*VF*/
29 return pkt.phop /*Proxy found, SRR*/
30 }
Algorithm 3: Traffic-aware routing (TAR) in FiConn.

by s because of bypassing (s is removed from the path by
SRR). Each server initiates a Virtual Flow Counter (VFC) as
zero. When a flow bypasses its level-l link, VFC is added
by one. When a flow is routed by its level-0 outgoing link,
VFC is reduced by one given it is a positive value. When
evaluating the available bandwidth of an outgoing link, not
only the current routed flows are counted, but the virtual flows
for the level-0 link are also considered. The traffic volume of
a virtual flow is set as the average traffic volume of routed
flows. In this way, the imbalance trap problem is overcome.

E. Algorithm

Taking the solutions above together, we design the algorithm
of TAR in FiConn, as illustrated in Algorithm 3. The function
TARoute() returns the next-hop server when a level-l server s
routes the path-probing packet pkt.

Lines 2-3 handle the case when the path-probing packet
arrives at the destination server s. The packet is delivered to



8

the upper layer.

Lines 4-8 are the SRR processing. If s once routed the path-
probing packet and now receives the packet from the next hop
of the flow in the routing table (Line 4), it is an indication that
this is the SRR processing. s then gets the original previous
hop of the flow (Line 5), and erases the routing entry (Line 6).
If s is not the source server for the flow (Line 7), it just routes
the path-probing packet to the original previous hop (Line 8).

Lines 9-10 are for the case when s is the level-l proxy server
in the current FiConnl (line 9). It modifies PRl as BYONE.

Lines 11-12 get the next hop by TOR. First we find the
next destination server (Line 11). The function getPRDest()
returns the lowest-level proxy server in PR field of the packet;
if there is no proxy server, it returns the destination server of
the packet. Then we compute the next hop towards the next
destination server using TOR (Line 12).

Lines 13-14 process the special case for source server to
compute the next hop. The difference for a source server from
other intermediate servers is that if the next hop using TOR
is within the same FiConn0 but the available bandwidth of its
level-l link is higher than that of its level-0 link (Line 13), its
level-l neighboring server is selected as the next hop (Line 14).
Note that virtual flows are considered to compute the available
bandwidth.

Lines 15-20 are responsible for the cases that do not need to
bypass the level-l link. The first case is that the previous hop
is the level-l neighboring server and the next hop is not the
same. Note that the next hop based on TOR may be the same
as the previous hop if the previous hop is the source server. The
second case is that the previous hop is from the same FiConn0

and the available bandwidth of the level-l link is not less than
that of the level-0 link. Line 15 makes the judgement. Lines
16-17 reduces vfc by one if this flow is to be routed by level-
0 link. Before returning the next hop (line 20), s resets the
PR field (line 21) and updates the routing table. The function
resetPR() resets all PRis (i < l) as BYZERO.

Lines 21-29 deal with how to bypass the level-l link. The
function bypassLink() in Line 23 finds a proxy server to bypass
the level-l link of s, updates the PR field and returns the next
hop towards the proxy server; but if it cannot find a proxy
server, it returns NULL. Therefore, if bypassLink() returns
NULL (Line 24), level-l link is not bypassed (Line 25-27);
otherwise, the level-l link is bypassed and the packet is sent
to the previous hop of the flow for SRR processing (Line 29),
before which vfc is added by one.

Based on the algorithm of TAR described above, we can
compute the maximum length of routing path in TAR.

Theorem 6: In TAR, the maximum length of routing path
between any two servers in FiConnk is 2 ∗ 3k − 1.

Proof: Assume the maximum length of a routing path
between two servers in a FiConnk based on TAR as Mk.
The longest TAR path between two servers in a FiConnk+1

traverses three FiConnks and two level-k links between them.
Hence, there is Mk+1 = 3∗Mk +2, and M0 = 1. As a result,
we have Mk = 2 ∗ 3k − 1.

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

time (s)

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
G

bp
s)

TOR
TAR

Fig. 6. Aggregate throughput in FiConn for random traffic.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

time (s)

A
ve

ra
ge

 p
at

h 
le

ng
th

TOR
TAR

Fig. 7. Average path length in FiConn for random traffic.

V. EVALUATION

We have analyzed the basic properties of FiConn in Section
III, such as the high scalability, low diameter, high bisection
width, as well as the balanced use of different levels of links
in routing. In this section, we conduct simulations to evaluate
the routing algorithms we design for FiConn.

We run the simulation on a FiConn2 in which n = 32,
thus there are in total N = 74, 528 servers. The speed of
all the Ethernet ports and links are 1Gbps. Two types of
traffic patterns are considered. One is random traffic, and the
other is burst traffic between two subsets of FiConn servers
produced by computation models such as map-reduce. For the
random traffic, we randomly choose N/2 pairs of servers from
all the servers and there is one flow between each pair. So
there are altogether 37,264 flows in the network. For the burst
traffic, we randomly choose two FiConn1s. For every server
in one FiConn1, there is a flow from it to every server in the
other FiConn1. Hence, there are totally 295,936 flows in the
network. All the flows are initiated sequentially in the first 30
seconds, and the path-probing packet in TAR is sent every 30
seconds for a flow. We compute the aggregate throughput and
average path length of TAR and TOR respectively.

Random Traffic: Fig.6 and Fig.7 illustrate the aggregate
throughput and the average path length respectively for ran-
dom traffic.

From Fig.6, we see that the aggregate throughputs of TAR
and TOR are very close. At the end of the first 30 seconds,
the throughput of TOR is about 8.5% higher than that of TAR.
However, after several rounds of dynamic adjustment, the
difference between them is within 2.5%. The slight advance
of TOR comes from its shorter routing path, which benefits
improving the aggregate throughput when traffic is randomly



9

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

time (s)

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
G

bp
s)

TOR
TAR

Fig. 8. Aggregate throughput in FiConn for burst traffic.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

time (s)

A
ve

ra
ge

 p
at

h 
le

ng
th

TOR
TAR

Fig. 9. Average path length in FiConn for burst traffic.

distributed.
Fig.7 shows that the average path length of TAR is always

more than that of TOR, but within 1.5 hops in steady state. In
combination with Fig.6, we also find that TAR can dynami-
cally adapt to traffic states and improve the throughput as well
as reduce the path length.

Burst Traffic: Fig.8 and Fig.9 show the aggregate through-
put and the average path length respectively for burst traffic.

From Fig.8 we find that the aggregate throughput of TOR
is only 1Gbps, resulting from the bottleneck level-2 link that
connects the two selected FiConn1s. However, by exploiting
the links beyond the two Ficonn1s and the bottleneck level-2
link, TAR achieves an aggregate throughput of 99.5G, which
shows a tremendous improvement over TOR.

The result of Fig.9 also tells that the average path length of
TAR is longer than that of TOR, but the difference is within
three hops.

Taking the two groups of simulations together, we draw the
following conclusions. First, our TAR can adapt to dynamical
networking conditions to improve the throughput as well as
reduce the routing path length. Second, the average path length
in TAR is always more than that in TOR, but the difference is
no more than 1-3 hops in the FiConn2. Third, the aggregate
throughput of TAR is quite similar to TOR in uniform traffic,
but much higher than TOR in burst traffic that is common in
data centers. In other words, the TAR can indeed well exploit
the link capacities of FiConn to improve the networking
throughput. Considering the little control overhead, our TAR
is especially suitable for FiConn.

VI. CONCLUSION

In this paper we propose FiConn, a novel server-
interconnection network structure that utilizes the dual-port

configuration existing in most commodity data center server
machines. It is a low-cost structure because it eliminates the
use of expensive high-end switches and puts no additional
hardware cost on servers. It is highly scalable to encompass
hundreds of thousands of servers with low diameter and high
bisection width. The routing mechanisms in FiConn balance
different levels of links and are traffic-aware to better utilize
the link capacities according to traffic states.

REFERENCES

[1] T. Hoff, “Google Architecture”, http://highscalability.com/google-
architecture, Jul 2007

[2] L. Rabbe, “Powering the Yahoo! network”, http://yodel.yahoo.com
/2006/11/27/powering-the-yahoo-network, Nov 2006

[3] A. Carter, “Do It Green: Media Interview with Michael Manos”,
http://edge.technet.com/Media/Doing-IT-Green, Dec 2007

[4] J. Snyder, “Microsoft: Datacenter Growth Defies Moore’s Law”,
http://www.pcworld.com/article/id,130921/article.html, 2007

[5] S. Ghemawat, H. Gobio, and S. Leungm, “The Google File System”, In
Proceedings of ACM SOSP’03, 2003

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters”, In Proceedings of OSDI’04, 2004

[7] M. Isard, M. Budiu, Y. Yu and etc., “Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks”, In Proceedings of ACM
EuroSys’07, 2007.

[8] M. Al-Fares, A. Loukissas and A. Vahdat, “A Scalable, Commodity Data
Center Network Architecture”, In Proceedings of ACM SIGCOMM’08,
Aug 2008

[9] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang and Songwu Lu, “DCell:
A Scalable and Fault-Tolerant Network Structure for Data Centers”, In
Proceedings of ACM SIGCOMM’08, Aug 2008

[10] Dell Powerage Servers. http://www.dell.com/content/products/category.aspx
/servers

[11] H. Sullivan and T. R. Bashkow, “A large scale, homogeneous, fully
distributed parallel machine I”, In Proceediings of ISCA’77, Mar 1977

[12] L. Bhuyan and D. Agrawal, “Generalized Hypercube and Hyperbus
Structures for a Computer Network”, In IEEE TRANSACTIONS ON
COMPUTERS, 33(4):323-333, Apr 1984

[13] W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Intercon-
nection Networks”, In Proceedings of DAC’01, Jun 2001

[14] L. Bhuyan and D. Agrawal, “A general class of processor interconnec-
tion strategies”, In Proceedings of ISCA’82, Apr 1982

[15] F. Leighton, “Introduction to Parallel Algorithms and Architectures:
Arrays. Trees. Hypercubes”, Morgan Kaufmann, 1992

[16] B. Parhami, “Introduction to Parallel Processing: Algorithms and Archi-
tectures”, Kluwer Academic, 2002

[17] W. Dally, P. Carvey and L. Dennison, “The Avici Terabit Switch/Router”,
In Proceedings of Hot Interconnects’98, Aug 1998

[18] D. Loguinov, A. Kumar, V. Rai and S. Ganesh, “Graph-Theoretic
Analysis of Structured Peer-to-Peer Systems: Routing Distances and Fault
Resilience”, In Proceedings of ACM SIGCOMM’03, Aug 2003

[19] J Kim, W. Dally and D. Abts, “Flattened Butterfly: A Cost-Efficient
Topology for High-Radix Networks”, In Proceedings of ISCA’07, Jun
2007

[20] J Kim, W. Dally, S. Scott and D. Abts, “Technology-Driven, Highly-
Scalable Dragonfly Topology”, In Proceedings of ISCA’08, Jun 2008


