
HOURS: Achieving DoS Resilience in an Open Service Hierarchy

Hao Yang, Haiyun Luo, Yi Yang, Songwu Lu, Lixia Zhang
Computer Science Department, University of California, Los Angeles

E-mails:{hyang, hluo, yangyi, slu, lixia}@cs.ucla.edu

Abstract

Hierarchical systems have been widely used to provide
scalable distributed services in the Internet. Unfortunately,
such a service hierarchy is vulnerable to DoS attacks. This
paper presents HOURS that achieves DoS resilience in an
open service hierarchy. HOURS ensures high degree of ser-
vice accessibility for each surviving node by: 1) augment-
ing the service hierarchy with hierarchical overlay networks
with rich connectivity; 2) making the connectivity of each
overlay highly unpredictable; and 3) recovering the overlay
when its normal operations are disrupted. We analyze an
HOURS-protected open service hierarchy, and demonstrate
its high degree of resilience to even large-scale, topology-
aware DoS attacks.

1. Introduction

Hierarchical systems have been widely used to provide
scalable distributed services in the Internet. Such a system
usually organizes the servers into a tree-like topology, and
forwards the user queries along prescribed top-down paths.
The hierarchy is accessible to any user over the global In-
ternet, and its topology is publicly known. We call such
systemsopen service hierarchies. Examples are DNS [16],
LDAP [24], PKI [7] to name a few. Due to the popularity
and importance of these services (e.g., domain name reso-
lution, certification), it is desirable that they be highly avail-
able even under the emerging Internet Denial-of-Service
(DoS) attacks1[17][26].

Two requirements arise in order to achieve high degree
of service availability. First, the server that holds the an-
swer to a user query should be properly functioning. Sec-
ond, the service should beaccessiblein that the query can
be forwarded to the server holding the answer. While indi-
vidual servers can be protected through replication or any-
cast techniques, we focus on the resilience ofservice acces-
sibility under DoS attacks in this paper.

1 We use the termDoS attackin its general form, which also includes
the Distributed DoS (DDoS) attacks.

A

B C
Level 1

Level 0

Level 2

Level 3

E F G

H

D

Figure 1. DoS attacks against a single node may throt-

tle the accessibility of the entire subtree.

The service accessibility is vulnerable to DoS attacks in
an open service hierarchy due to its low connectivity. In the
example shown in Figure 1, the DoS attacks against any
single node (e.g.,C) may createdominoeffects and throt-
tle the accessibility of all its descendants (e.g.,E, F , G and
H). Specifically, due to the failure of the high-level node
C, user queries cannot reach nodeH that holds the answer,
even if nodeH itself is well-protected and functioning prop-
erly. Since the hierarchy topology is publicly known, the at-
tacker can selectively attack theweakestnode/link along the
top-down path to deny the service of the target node.

The goal of this work is to ensure high degree of service
accessibility for eachsurvivingnode, regardless of the fail-
ures of other nodes that are directly under DoS attacks. In
other words, we seek to confine the damage of DoS attacks
in an open service hierarchy. This problem is challenging
due to two reasons. First, the attacker can exploit the hier-
archy topology information to launch topology-aware, and
potentially large-scale DoS attacks. Second, the open na-
ture of the service prohibits existing DoS solutions that are
based on user authentication, such as SOS [11].

Our approach is to exploit Hierarchical Overlays Using
Randomized Structure (HOURS) and establishrich yet un-
predictableconnectivity in the hierarchy. The base design of
HOURS explores two ideas:hierarchical overlaysandran-
domized overlays, to achieve DoS resilience. In this design,
each node guides its children to form an overlay network.
Within an overlay, each node keeps a fewrandompointers
to other sibling nodes as well as their children. This way,

HOURS augments the service hierarchy with hierarchical
overlays and enriches the connectivity. When certain nodes
are under DoS attack, the queries are forwarded across the
overlays to bypass the attacked nodes.

The above base design is highly resilient to random at-
tacks in which the attacker randomly selects victim nodes.
However, it cannot address topology-aware and large-scale
attacks, in which the attacker attacks large numbers of adja-
cent nodes in an overlay. The enhanced design of HOURS
defeats such attacks by a novel forwarding mechanism and
an active recovery mechanism.

We analyze the DoS resilience of an HOURS-protected
open service hierarchy in terms of both service accessibil-
ity and forwarding efficiency. The results show that HOURS
is highly resilient and achieves graceful performance degra-
dation when the scale of the DoS attacks increases. These
results are also verified by extensive simulations.

HOURS preserves the original service hierarchy and is
backward-compatible with the current system implementa-
tion, as opposed to completely replacing the hierarchy with
a flat overlay [4]. HOURS is also incrementally deployable.
Any part of the hierarchy can immediately benefit from the
deployment of HOURS with significantly improved (local)
connectivity and enhanced resilience against DoS attacks.

The rest of the paper is organized as follows. Section 2
defines our network model. Section 3 and Section 4 present
the base design and the enhanced design of HOURS, re-
spectively. Section 5 analyzes the system resilience against
DoS attacks, and Section 6 presents simulation evaluations.
Section 7 discusses several design issues. Section 8 reviews
the related work. Finally, Section 9 concludes this paper.

2. Models

We consider anopen service hierarchy, a hierarchical
system that provides large-scale lookup service in the In-
ternet such as DNS [16], LDAP [24], PKI [7]. While it is
hard to model all implementation details of various systems,
we capture their essential features in a simplified model, on
which our design and analysis are based. In this model, an
open service hierarchy is characterized as follows:

• Topology: It consists of a large number of nodes that
are organized into a hierarchical tree structure.

• Naming: There is a unified naming space. Each node
manages a unique portion of the space, and may dele-
gate a subset of its portion to its children nodes.

• Usage: The users access the lookup service via queries,
which are forwarded top-down over the hierarchy to
the nodes that hold the answer/data.

• Openness: The service is open to any user over the In-
ternet, and the hierarchy topology is publicly known2.

For ease of presentation we assume that the service hi-
erarchy exhibits an exact tree structure, and each node cor-
responds to one physical server. In Section 7 we will see
that our design can be extended to accommodate replicated
servers and more complicated topologies such as a mesh.
We assume that the tree may have an arbitrary number of
levels, and there may be an arbitrary number of nodes in
each level. Each node in the tree may join, leave, fail at any
time despite infrequently.

Lastly we define two terms as follows.

• Sibling: Two nodes in a tree are siblings if and only if
they share the same parent node.

• Nephew: A nephew node is a child of a sibling node.

3. Base Design of HOURS

The base design of HOURS explores two ideas, hierar-
chical overlays and randomized overlays, to establish rich
yet unpredictable connectivity in the hierarchy.

3.1. Hierarchical Overlays

On top of the original service hierarchy, HOURS orga-
nizes nodes into multiple overlay networks, as shown in
Figure 2. Each node participates in one overlay only, formed
together with all its siblings. Within an overlay, each node
maintains a routing table that has: 1) a few sibling point-
ers; and 2)q nephew pointers to the children of the neigh-
boring sibling. For example, in the level-1 overlay shown in
Figure 2, nodeD keeps three sibling pointers to nodeC, I
andJ , respectively.D also keeps one nephew pointer toG,
a child ofC that isD’s neighbor (q=1 in this case). We will
describe how each node picks up these pointers shortly.

The sibling and nephew pointers in the hierarchical over-
lays enrich the connectivity among nodes both horizontally
(i.e., in the same level) and vertically (i.e., across adjacent
levels). When the top-down forwarding fails due to DoS at-
tacks on the prescribed path, such overlay pointers can be
used to forward the query and bypass the attacked nodes, as
described in Section 3.3.

HOURS preserves yet augments the original hierarchy,
thus achieving several desirable properties. First, without
overhauling the infrastructure base, HOURS is compatible
with the current system implementation and incrementally
deployable. Second, HOURS preserves the delegated man-
agement and allows for each parent to enforce proper ad-
mission control. This is important in preventing attackers
from joining the hierarchy and launching DoS attacks from
insidethe system, as we will further elaborate in Section 5.

2 Although a normal user does not maintain such topology information
due to overhead concern, the attackers may intentionally collect this
information to launch topology-aware attacks.

A

B C

Level−2 Overlay

Level−3 OverlayLevel−3 Overlay

D
Level−1 Overlay

Level−2 Overlay

Level−3 Overlay

B C D

E F G
Level−2 Overlay

Level−1 Overlay

FE G

Sibling Pointer

Nephew Pointer

IJ

Figure 2. The base design of HOURS. Upper : HOURS

augments the original hierarchy with hierarchical over-

lay networks. Bottom: One example of the overlays, in

which each node (e.g., D) keeps a few random pointers

to its siblings and nephews.

3.2. Randomized Overlays

The construction of each overlay is inspired by a small-
world paradigm [12]. Each node, with the assistance from
its parent node, generates its routing table (i.e., sibling and
nephew pointers) using arandomizedalgorithm shown in
Algorithm 1.

Each node is assigned an identifier (ID) that is randomly
chosen from a circular identifier space, e.g., by applying a
hash function such as SHA-1 on its name. For the purpose
of probability calculation during routing table generation,
each node is also given anindexby its parent. The parent
node sorts the IDs of all its children, assigns index0 to an
arbitrary node, and traverses the identifier circle clockwise
while incrementing the index one by one. We use nodei to
refer to the node with indexi. Note that the ID of a node is
determined by its name and the publicly known hash func-
tion, while the node index depends on the complete mem-
bership information of an overlay.

The sibling pointers are generated based on the node in-
dices. Consider two arbitrary nodes, sayi andj, in an over-
lay of N nodes. The index distance from nodei to nodej
is defined asdx(i, j)=(j − i) mod N , i.e., clockwise dif-
ference between their indices. Accordingly, nodei keeps a
pointer to nodej with a probability of 1

dx(i,j) . This way,
each node keeps a pointer to its clockwise sibling for sure,
as well as a few random shortcuts to other siblings. Finally,
each node contacts its clockwise sibling, and establishesq
nephew pointers toq random children of that sibling.

The above operations require a node to know: 1) the size

Algorithm 1 Pseudo code for routing table generation
1: Obtain the overlay sizeN and its own indexi from the parent
2: U = φ
3: for m = 1 to N − 1 do
4: With probability of 1

(m−i) mod N
, U = U + {m}

5: end for
6: Query the parent about the addresses of all nodes with indices inU

7: Create routing table with the returned sibling pointers

of the overlay,N ; and 2) the addresses of the nodes to which
it decides to generate pointers. Note that these two pieces
of information arereadily availableat the parent node that
manages and assigns indices to all its children. In essence,
the routing table generation in HOURS is fully distributed
in that each node builds its routing table independently, but
under the centralized guidance of its parent node3.

3.3. Query Forwarding

In HOURS, a query is forwarded along the top-down
tree path whenever possible, a process calledhierarchical
forwarding. When hierarchical forwarding fails at an inter-
mediate node due to DoS attacks, the query is forwarded
across overlays using sibling and nephew pointers as a de-
tour, a process calledoverlay forwarding. After the attacked
node(s) are bypassed, the query will be routed back to the
top-down path, from which the hierarchical forwarding re-
sumes. Thus the entire query forwarding may be a mixture
of hierarchical forwarding and overlay forwarding.

We use[v0 → v1 → · · · → vl] to denote the top-down
tree path for a query, wherevi denotes a level-i intermedi-
ate node in the service hierarchy, andv l denotes the desti-
nation node that holds the answer/data. Upon the failure of
an intermediate nodevi−1, overlay forwarding is activated
and the forwarding path becomes

[· · · vi−2 → Si−1 → Si(vi) → vi+1 · · ·]
whereSi denotes the overlay forwarding path inside the
overlay thatvi belongs to.Si starts with an entrance node
ei and ends at the exit nodexi. For a slight abuse of nota-
tions,Si may also denote a level-i overlay network, and its
meaning will be clear from the context.

The query typically starts with the root nodev0. When
v0 is out of service due to DoS attacks, query forwarding
can start with any node in thel overlay networks along the
top-down tree path, i.e.,{S1, S2, · · · , Sl}. We will discuss
such bootstrapping issues in Section 7.

Once a query enters an overlay at the entrance nodee i, it
is forwarded towardvi, even ifvi may be down. Each inter-
mediate node uses its sibling pointers to forward the query

3 As a result, technically a new node cannot join the overlay when its
parent fails. However, this may not be a problem in practice since the
management of the service hierarchy requires a new node to register
itself with and be admitted by the parent in the first place.

Algorithm 2 Pseudo code for query forwarding
1: if (query destination is a descendant node)then
2: V ← the child along the top-down tree path
3: if (V is alive) then
4: Forward the query toV
5: else
6: Forward the query to an alive child
7: end if
8: else
9: if (OD-node is not the clockwise neighbor in the overlay)then

10: Forward the query using the bestsibling pointer
11: else
12: Forward the query using the bestnephewpointer
13: end if
14: end if

in a greedy manner (Line 10 in Algorithm 2), until the query
hits an exit node. Specifically, it forwards the query to the
sibling in its routing table that is closest to nodevi in theID
space. For this reason we also callvi theoverlay-destination
node, or OD-node in short.

The exit node can be either the OD-nodev i itself if it is
alive, orvi’s counter-clockwise neighbor ifvi is out of ser-
vice. If the query reaches the OD-nodev i, hierarchical for-
warding resumes4, i.e., [· · ·Si(vi) → vi+1 · · ·]. Otherwise,
the query reachesvi’s counter-clockwise neighbor, and then
is forwarded to the next level (i+1) overlay using a nephew
pointer, i.e.,[· · ·Si → Si+1 · · ·]. To speed up overlay for-
warding, the query is forwarded to the nephew that is clos-
est, in theID space, to the next level OD-nodevi+1 (Line
12 in Algorithm 2).

3.4. Effectiveness of the Base Design

The performance of the randomized overlay, in terms of
both routing table size and number of overlay forwarding
hops, is shown in Theorem 1 (proof in technical report [23]).

Theorem 1 With high probability, each node keeps a rout-
ing table with O(log N) entries, and each query is for-
warded inO(log N) steps.

As analyzed in Section 5, the base design is highly re-
silient to random attacks in which the attacker randomly se-
lects victim nodes. However, using the original hierarchy
topology, the attacker can easily infer the membership and
thus neighboring relationship in each overlay. He can then
precisely locate the OD-nodevi and its counter-clockwise
neighbor, and shut them down simultaneously to break both
the top-down tree path and the overlay path. We defeat such
topology-awareattacks in the enhanced design.

4 Unless the immediate next-hopvi+1 fails too, in which case the query
is sent tovi+1 ’s counter-clockwise neighbor in the next level overlay,
i.e., [· · ·Si(vi)→ Si+1 · · ·], and overlay forwarding continues.

4. Enhanced Design of HOURS

In this section we present three mechanisms to enhance
the base design and improve its resilience against large-
scaleneighbor attacks, in which a topology-aware attacker
attacks a large number of neighboring nodes in an overlay.
Before we describe the details, we outline the differences
between base design and enhanced design as follows.

Enhanced Design

O(k log N)

kClockwise Neighbor

Base Design

O(log N)

q

1

Counter−clockwise Neighbor 1

Clockwise or
Counter−clockwise

Sibling Pointer

No YesActive Recovery

Overlay Forwarding Clockwise

0

O(q k log N)Nephew Pointer

4.1. Increasing the Redundancy

The vulnerability of the base design to neighbor attacks
comes from the fact that the pointers to a nodev i’s chil-
dren are maintained only atvi’s counter-clockwise neigh-
bor. Below we progressively present three steps to increase
the connectivity and address such vulnerability.

Our first step is to increase the redundancy of nephew
pointers by a factor ofk. That is, thek counter-clockwise
neighbors ofvi will each maintainq nephew pointers to its
children5. Thus the attacker has to shut down allk counter-
clockwise neighbors of an OD-nodevi to disrupt the over-
lay forwarding. While this increases the difficulty to launch
attacks, it provides only limited defense (k nodes).

Inspired by the random sibling pointers, our second step
is to make nephew pointersrandomizedas well. For ease
of implementation we let the nodes storeq nephew point-
ers for each sibling in their routing tables. That is, when
a node has established its random sibling pointers, it con-
tacts these siblings and storeq nephew pointers from each
of them.

Our final step is to increase the redundancy of sib-
ling pointers by a factor ofk. Note that these three steps
can actually be implemented together by letting a nodei
keep a pointer to its sibling nodej with a probability of
min(1, k

dx(i,j)). This way, each node keepsk pointers to its
k clockwise neighbors for sure, and the number of sibling
pointers increases byk times on average, compared to the

5 In another word, each node maintainsq nephew pointers for each of
its k clockwise neighbors.

base design case. Moreover,q nephew pointers are main-
tained for each sibling pointer in the routing table. As shown
later, these redundant connectivity can greatly improve the
resilience of the service hierarchy against topology-aware
and large-scale DoS attacks.

4.2. Backward Query Forwarding

If any of thek counter-clockwise neighbors of an OD-
nodevi is alive, it can serve as the exit node because it has
q nephew pointers tovi’s children. However, if all thesek
nodes fail due to large-scale neighbor attacks, the query will
stop at the node with indexi-k-1 (modN i). We use a back-
ward forwarding mechanism to route the query backward
step-by-step, until it hits a node that has nephew pointers to
vi’s children. The complete overlay forwarding in the en-
hanced design is shown in Algorithm 3. Note that in order
to facilitate backward forwarding, each node also maintains
a pointer to its counter-clockwise neighbor.

The following theorem and corollary quantify the perfor-
mance of the backward query forwarding (proof in techni-
cal report [23]).

Theorem 2 For an arbitrary node with an index ofi and an
arbitrary distance ofd, with high probability, there exists a
node in the interval[i − 2d, i − d] that maintains nephew
pointers to nodei’s children.

Corollary 1 With high probability, a query travels at most
k steps backward before it hits an exit node.

Algorithm 3 Pseudo code for enhanced overlay forwarding
Require: {OD-node, Mode(eitherforward or backward)}

1: if (OD-nodeis in the routing table)then
2: //forward the query toOD-nodeor its children
3: Locate the corresponding entry
4: next hop← the sibling pointer in the entry
5: if (next hop fails) then
6: next hop← a nephew pointer in the entry
7: end if
8: else
9: //forward the query in the overlay

10: if (Mode=forward) then
11: next hop← the sibling pointer closest toOD-node
12: if (itself is closer toOD-nodethannext hop) then
13: //change the mode when greedy forwarding fails
14: SetModeto backwardin the query
15: next hop← the counter-clockwise closest neighbor
16: end if
17: else
18: next hop← the counter-clockwise closest neighbor
19: end if
20: end if
21: Forward the query tonext hop

4.3. Active Recovery

The clockwise greedy forwarding requires each node to
track its alive clockwise neighbor. The backward forward-

NephewSibling

9
5
4 *

*
*

*
*
*

NephewSibling

0
7
6 *

*
*

*
*
*

2

1

4
6

9

3
7

5

0

NephewSibling

1
9
8 *

*
*

*
*
*

8

NephewSibling

3
2
1 *

*
*

*
*
*

Figure 3. Active recovery of the overlay

ing also requires a node to track its alive counter-clockwise
neighbor. Conventional neighborhood recovery techniques
[22][20] can maintain these pointers under limited consec-
utive node failures, provided that there is no gap in the ring.
However, such a gap is possible under large-scale neighbor
attacks. Thus we present a mechanism, calledactive recov-
ery, to repair the neighbor pointers from a potential gap.

Specifically, each node periodically probes its counter-
clockwise neighbor. When that neighbor fails, it waits for
another alive counter-clockwise neighbor (up tok counter-
clockwise neighbors maintain pointers to it) to contact it
and recover the neighbor pointer. If it has not been con-
tacted after one probing period, it infers that massive node
failure happens and starts the active recovery process. The
node sends out aRepairmessage destined to itself. For ex-
ample, if all nodes with index[s − f, s] fail wheref ≥ k,
it is nodes + 1 that sends out theRepairmessage. When a
node receives thisRepairmessage, it checks its routing ta-
ble. If nodes+1 is not in the routing table, it treats the mes-
sage as a normal query and forwards it using the greedy al-
gorithm. Otherwise, it forwards the message using thesec-
ond best choice. Whenever a node cannot forward theRe-
pair message based on the above rules, it creates a new rout-
ing entry for nodes + 1. We can see that nodes − f − 1
eventually receives this message, and adds nodes + 1 into
its routing table. This way, all alive nodes still maintain a
ring structure without any gap in the overlay.

We illustrate the active recovery mechanism using an ex-
ample (k = 2) shown in Figure 3. When node8 and node9
fail at the same time, a gap appearing between node7 and
node0 breaks the connectivity of the overlay. Node0 no-
tices the failure of node9 after one probe period, and sends
a Repairmessage, destined to itself (node0), to node3 af-
ter one probing period. Node3 treats this message as a nor-
mal query and forwards it to node5. Because node5 al-
ready keeps node0 in its routing table, it forwards the mes-
sage using the second best choice in its table: node7. As
node7 receives the repair message, it creates an entry for
node0 since both forwarding rules do not apply. Finally

node0 fills in the sibling section with the pointer in theRe-
pair message. We can see that the gap between node7 and
node0 is now bridged.

5. Resilience Analysis

In this section, we present a formal analysis on the
DoS resilience of an HOURS-protected open service hierar-
chy. We focus on the query forwarding performance under
DoS attacks. Our analysis seeks to answer two questions:
whether a query can be forwarded to its destination, and in
how many hops. To this end, we use two metrics to quan-
tify the DoS resilience. Thedelivery ratiois used to evalu-
ate the service accessibility, and thenumber of forwarding
hopsis used to evaluate the forwarding efficiency. Specif-
ically, given a nodev, the delivery ratio is defined as the
probability thatv receives a query for which it holds the an-
swer. The number of forwarding hops is defined as the to-
tal number of hops that a query traverses before it reaches
the destination.

We first consider DoS attacks launched by attackers out-
side the hierarchy. We assume that the attackers can com-
pletely shut down a certain number of nodes. We also as-
sume that the attackers are aware of the complete topology
of the service hierarchy, and the members of each overlay.
Since the hash function that maps the name of a node into its
ID is well-known. the attackers can easily infer the position
of the nodes in the identifier circle, and hence the neighbor-
ing relationship, in each overlay. However, we assume that
the attackers cannot exactly infer the random sibling point-
ers kept by each node6. We also analyze the impact of at-
tackers that are inside the system in Section 5.3.

We use the same notation as in Section 3.3. In addition,
the number of nodes in a level-i overlayS i is denoted asNi,
that is,Ni = |Si|. We useSai (⊆ Si) to denote the set of
nodes that are attacked in overlaySi. We setNai = |Sai|,
andαi = Nai

Ni
≤ 1 as the attack density.

5.1. DoS Attacks on Hierarchical Forwarding

In order to deny the service provided by a nodev l, the
attackers have to first tear down the hierarchical forward-
ing path, i.e.,[v0 → v1 · · · → vl]. Without HOURS, DoS
attacks on any single node along the hierarchical forward-
ing path results inzerodelivery ratio. With HOURS, even if
all intermediate nodes are attacked simultaneously, the de-
livery ratio is still 100% since queries can always arrive at
vl using overlay forwarding.

However, overlay forwarding takes longer paths than hi-
erarchical forwarding. Since query forwarding in HOURS

6 Although a parent node guides its children in forming their overlay, it
does not record the connectivity in the overlay.

is a mixture of hierarchical forwarding and overlay forward-
ing, the number of forwarding hops in the general case is:

l∑
i=1

F (i), where

{
F (i) ∼ O(log Ni) if vi or vi−1 fails
F (i) = 1 otherwise

5.2. DoS Attacks on Overlay Forwarding

Since attacking the hierarchical forwarding path by it-
self is not effective against an HOURS-protected hierarchy,
the attackers have to attack the overlay forwarding simul-
taneously. Overlay forwarding is composed of two phases.
One isintra-overlay forwarding, i.e., the path from the en-
trance nodeei to the exit nodexi inside an overlaySi. The
other isinter-overlay forwarding, i.e., the single hop from
the exit nodexi to any node in the next-level overlayS i+1.

When inter-overlay forwarding is under attack, because
the exit nodexi maintains at leastq nephew pointers toq
nodes inSi+1, the inter-overlay forwarding fails with prob-
ability αq

i+1. A reasonably largeq, say 10, can make the fail-
ure probability of inter-overlay forwarding negligible. Thus
the overall delivery ratio can be approximated as

∏l
i=1 Pi,

wherePi denotes the probability that the intra-overlay for-
warding succeeds inSi. Below we study the scenarios when
intra-overlay forwarding is under attack.

Given an attack densityαi, the attackers selectNai =
αiNi victims in order to maximize the damage of the at-
tacks, i.e., minimizingPi. Since the attackers do not know
the random connectivity of overlayS i, they may simply at-
tack Nai randomly-chosen nodes, namelyrandom attack.
On the other hand, the probability that a nodev serves as
an exit node forvi decreases monotonically as their dis-
tancedx(v, vi), i.e., the clockwise difference of their in-
dexes, increases. The attackers can focus their attack on
these counter-clockwise neighbors ofvi to maximize the
probability that all potential exit nodes forv i are shut down,
namelyneighbor attack7. In fact, neighbor attack is the op-
timal strategy for the DoS attackers, given a fixed amount
of power characterized by the attack densityα i.

Under either attack, a query is forwarded according to
the greedy algorithm to the alive counter-clockwise neigh-
bor of vi, denoted byui. If ui is not an exit node, i.e., it
does not have the sibling pointer tovi or nephew pointers
to Si+1

8, the query will then be forwarded step-by-step in
the counter-clockwise direction until it reaches an exit node.

7 Note that attackingvi ’s clockwise neighbors does not affect queries
that are forwarded towardvi.

8 This means the neighboring relationship betweenui andvi has not
been established. It happens in the duration of the attacks when the
system has not been recovered from node failures yet.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of nodes attacked

Su
cc

es
s

Pr
ob

ab
ilit

y

k=5, random attack
k=10, random attack
k=5, neighbor attack
k=10, neighbor attack

Figure 4. Large-scale attacks on overlay forwarding

Therefore, under random attack, we have

Pi = 1 − αk
i

Ni−1∏
j=k+1

(1 − k

j
+

kαi

j
) (1)

Under neighbor attack, we have

Pi = 1 −
Ni−1∏

j=αiNi+1

(1 − min(1,
k

j
)) (2)

Figure 4 plots the relationship betweenPi and the attack
densityαi in an overlay ofNi = 200 nodes, under both ran-
dom and neighbor attacks with different numbers of redun-
dant neighbor pointers (k). The random attack has almost
negligible impact on the service accessibility until more
than80% of the nodes are attacked simultaneously. The op-
timal neighbor attack causes more damage than the random
attack, but the attackers still need to shut down more than
80% of the nodes to halve the service accessibility when
k = 5. If we increasek to 10, even though90% nodes are
under attack, we can still achieve a delivery ratio as high as
64%.

The figure shows that HOURS can provide high degree
of resilience even in the presence oflarge-scale(high α i),
topology-aware(neighbor attack) DoS attacks. More im-
portantly, the service accessibility degradesgracefully as
more and more nodes are out of service due to attacks or
failures. This property clearly differentiates HOURS from
other structured overlay designs such as Chord [22], in
which the overlay connectivity can be easily inferred once
its membership is known. With Chord, the service availabil-
ity will be throttled down from 100% to zero, once the at-
tackers precisely identify and simultaneously shut down the
O(log Ni) nodes that maintain pointers tovi. Similar con-
clusion can be drawn for other structured overlay designs
such as CAN [19], Pastry [20] and Viceroy [13].

The following theorems (proof in technical report [23])
also characterize the DoS resilience of HOURS in terms of
the number of forwarding hops, under random and neigh-

bor attacks respectively. Again, the forwarding efficiency
degrades gracefully as the attacker’s power (α i) increases.

Theorem 3 Let F (i) be the number of overlay forward-
ing hops in overlaySi. Under random attack,F (i) =
O(1

1−log(1−αi)
log Ni).

Theorem 4 F (i) is defined same as above. Under neigh-
bor attack,F (i) = O(log Ni) + O(Nai).

5.3. DoS Attacks from Inside the Hierarchy

The attackers who can compromise and control a certain
number of admitted nodes inside the service hierarchy can
cause more damage than merely shutting down nodes. For
example, a compromised node may drop all queries routed
through itself, leading to zero service accessibility through-
out its subtree. Such damage of a compromised nodes on its
descendants is out of the scope of HOURS.

However, HOURS ensures that a compromised node
cannot poison the routing tables of other nodes. Thus the
only way that a compromised node may damage nodes out-
side its subtree is to mis-route or drop their queries. The
attackers may intentionally introduce routing loops in the
overlay, the consequence of which is equivalent to a DoS
attack on the nodes involved in the loops and thus follows
our analysis above. For query dropping along overlay for-
warding path, the following theorem (proof in technical re-
port [23]) shows that the damage is determined by the dis-
tance from the compromised node to the targeted victim.

Theorem 5 A compromised node can decrease the service
accessibility of a victim sibling and its descendants by1d+1 ,
whered is the index distance from the compromised node to
the victim sibling.

Besides compromising admitted nodes in the system, the
attacker may join the hierarchy as a normal node does.
However, the random hash function (e.g., SHA-1) used to
map a node’s name to its ID ensures that the attacker can-
not arbitrarily choose itsID. Thus the damage is still limited
by Theorem 5. The attacker may accumulate a large num-
ber of IDs to increase their chance, known as Sybil [5] at-
tacks. However, when each parent node enforces proper ad-
mission control, such attacks can be effectively limited in
the first place, as one of the motivations for HOURS to pre-
serve the service hierarchy.

6. Simulation Evaluation

This section evaluates both base design (Section 3) and
enhanced design (Section 4) of HOURS using simulations.

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

Number of entries in routing table

Fr
ac

tio
n

of
 n

od
es

base design, k=1
enhanced design, k=5

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of forwarding hops

F
ra

ct
io

n
of

 q
ue

rie
s

base design, k=1
enhanced design, k=5

10
3

10
4

10
5

0

2

4

6

8

10

12

14

16

18

20

Number of nodes in the overlay

A
ve

ra
ge

 n
um

be
r o

f f
or

w
ar

di
ng

 h
op

s

base design
enhanced design, k=5

Figure 5. Routing table size Figure 6. Forwarding path length Figure 7. Scalability

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Number of queries forwarded (workload)

N
um

be
r

of
 n

od
es

base design, k=1
enhanced design, k=5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Fraction of nodes attacked

A
ve

ra
ge

 n
um

be
r o

f t
ot

al
 fo

rw
ar

di
ng

 h
op

s

k=5
k=10

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Number of nodes attacked

A
ve

ra
ge

 n
um

be
r o

f t
ot

al
 fo

rw
ar

di
ng

 h
op

s

k=5
k=10

Figure 8. Workload distribution Figure 9. Impact of random attacks Figure 10. Impact of neighbor attacks

6.1. Scalable and Efficient Overlay Forwarding

We first evaluate the performance of a single random-
ized overlay in terms ofrouting table size, forwarding path
length, scalability to large overlay size, andload-balancing.
In these simulations, we consider a randomized overlay
formed byN nodes, each of which is given a name ran-
domly selected from a large name space.

Figure 5 plots the distribution of routing table size when
N=50,000. The unit is one entry, corresponding to1 point-
ers in base design, andq + 1 pointers in enhanced design,
respectively. We can see that in the base design case, a rout-
ing table has only13.5 entries on average, which is consis-
tent with our analysis of Theorem 1. In the enhanced design
case withk = 5, the average routing table size increases by
5 times yet still follows a similar distribution.

The distribution of forwarding path length is shown in
Figure 6 (N=50,000). In each simulation run, we feed1
million queries with random chosen source and destina-
tion nodes into the overlay. The figure demonstrates the effi-
ciency of overlay forwarding. With the base design, on aver-
age a query is forwarded10.4 hops before it hits the destina-
tion. In the enhanced design case, due to the improved con-
nectivity, the average forwarding path length drops to4.8,
and90% of the queries are forwarded in less than7 hops.

We show the scalability of the randomized overlay in
Figure 7 by varying the overlay size from500 to2, 000, 000.
TheY -axis is the average path length. As expected, in the
base design case, the path length increases logarithmically
with the overlay size. In fact, it approximatesln N . The en-
hanced design shows even better performance in that the
forwarding path length increases sub-logarithmically as the
overlay size grows.

Lastly, we study the load-balancing feature of the ran-
domized overlay. We define the workload of a node as
the number of queries that it forwards in a simulation run.
The simulation results (N=50,000) are shown in Figure 8,
in which X-axis is the workload, andY -axis is the num-
ber of nodes that have undertaken a corresponding amount
of workload. We can see that in the base design case, a
few nodes may have received unfair share of the forward-
ing workload. Due to the randomized nature of the over-
lay, some nodes may appear in more routing tables than the
other nodes, i.e., having more inbound links, and thus have
larger chances to be selected to forward the queries. The
load-balancing feature is greatly improved in the enhanced
design case due to the enriched connectivity. As each node
keeps a larger routing table, it has more choices in select-
ing the next hop, thus alleviating the impact of varying in-
bound degrees.

6.2. DoS Resilience in an Open Hierarchy

Now we evaluate the DoS resilience of an HOURS-
protected open service hierarchy using two metrics:deliv-
ery ratioandnumber of forwarding hops, as defined in Sec-
tion 5. We build a four-level hierarchy with1000 nodes at
level1. The attacker has special interest in throttling the ser-
vice provided by all descendants of a specific level-1 node,
say nodeT . NodeT has50, 000 children at level2, each
of which may also have several children at level3. It is al-
most impossible for the attacker to attack all of them at the
same time. Thus we simulate a DoS attack against nodeT
and its siblings. We arbitrarily select a level-3 descendant
of nodeT , say nodeD, and focus our evaluation on the ser-
vice accessibility of nodeD.

We use the enhanced design to construct and main-
tain the overlay structure. The simulator also implements
two specific strategies of the attacker, namelyrandomand
neighborattacks, as described in Section 5.2. To study the
impact of large-scale DoS attack, we vary the attack den-
sity, defined as the number of failed nodes over the total
number of nodes. In each simulation run, we feed1 mil-
lion queries into the hierarchy with nodeD as the destina-
tion and collect the performance metrics.

The average number of forwarding hops under random
attacks is shown in Figure 9. We do not show delivery ratio
because it is always100% in all simulated cases. We can see
that HOURS offers high degree of resilience against random
attacks. When nodeT is attacked but none of its siblings is,
with k = 5 a query is forwarded in7.8 hops on average.
When70% of nodeT ’s siblings are under attacks, the aver-
age number of forwarding hops only increases to10.7. This
number even drops to7 when we increase the overlay con-
nectivity withk = 10.

We plot the average number of forwarding hops under
neighbor attacks in Figure 10. Again delivery ratio is omit-
ted as it is always100% in simulated cases. Consistent with
our previous analysis, the neighbor attacks cause more dam-
age than the random attacks. When the attacker can attack
300 neighbors of nodeT , the average forwarding path takes
24.2 hops whenk = 5, and19.1 hops whenk = 10. In
the extreme case when the attacker attacks500 neighbors
of nodeT , i.e., half of the nodes in this overlay, the aver-
age length of forwarding paths becomes61.4 hops when
k = 5, and46.6 hops whenk = 10. With no surprise,
the majority of these hops are spent on counter-clockwise
step-by-step forwarding to find a nephew pointer. The re-
sults here are quite conservative as we simulate an attacker
with very strong power. If the attacker has only limited re-
sources to attack100 nodes, the average number of forward-
ing hops is only13.5 whenk = 5, and11.2 whenk = 10.

In summary, the above simulation results confirm that
HOURS can achieve high degree of resilience even in the
presence of large-scale, topology-aware DoS attacks.

7. Discussion

In this section we comment on several design issues.
Query Bootstrapping and Caching A query has to en-
ter the hierarchy in the first place, so that HOURS can for-
ward it properly. In order to bootstrap her queries, a client
may cache the root node or a few frequently visited level-1
nodes. In case all of them are out of service, the client may
still be able to bootstrap the queries by exploiting the cache.
Because any node in the overlays along the top-down tree
path may serve as the starting point, a query can be boot-
strapped whenever such a node has been cached.

Overlay Maintenance Nodes may join, leave, or fail at
any time in the service hierarchy. To handle such dynam-
ics, each node periodically re-generates its routing table us-
ing Algorithm 1. Since the dynamics in a typical service hi-
erarchy is at most moderate, the update period can be set
reasonably large, say half a day. Between consequent up-
dates, the routing states may deviate from the ideal distribu-
tion. The DoS attacks against a parent node may even defer
the routing table update of its children. However, HOURS
can achieve graceful performance degradation even in such
abnormal cases, as analyzed in Theorem 3.
Server Replication HOURS works in concert with repli-
cated servers. A pointer to a node that is replicated at multi-
ple servers actually stores the addresses of all these servers.
When a query is forwarded using this pointer, it is actually
forwarded to any server that is alive. Clearly, server replica-
tion can greatly strengthen the system resilience under DoS
attacks.
Hierarchy with Mesh Topology Although we present
the HOURS design in the context of a tree hierarchy, it
is also applicable to service hierarchy with more complex
topology such as mesh. HOURS does not prohibit a node
with multiple parent nodes from joining multiple overlays.
In fact, the mesh topology further increases the connectiv-
ity among peering overlays, thus the DoS resilience.
Unbalanced Hierarchy In reality, the topology of a ser-
vice hierarchy may be highly unbalanced (e.g., DNS [16]).
Due to its scalable design, HOURS works well with the hi-
erarchy portion that forms large overlays. In fact, the larger
the overlay size, the higher degree the DoS resilience pro-
vided by HOURS. However, in a small-sized overlay (e.g.,
with tens of nodes), the achievable DoS resilience is lim-
ited. One possible approach is to aggregate multiple small-
size overlays into a large one. But the resulting architecture
may deviate from the original service hierarchy. We plan to
study this issue in the future.

8. Related Work

DoS attacks have recently attracted intensive attention,
and various solutions have been proposed to detect and pre-
vent DoS attacks at network routers [17][26][9][18][21][8].
An overlay-based solution, SOS [11], does not involve net-
work routers, but protects only sites that are accessible to
authenticated users. HOURS targets an open service hier-
archy that is accessible to arbitrary users, and does not as-
sume any support from the network routers.

Caching is a well-known technique that may alleviate
the damage of DoS attacks to certain extent. However,
caching provides only an opportunistic query resolution,
and its effectiveness highly depends on the query patterns
[2][10]. On the contrary, HOURS assures to forward arbi-
trary queries with high probability.

The idea of using redundant connectivity to improve the
resilience of a hierarchy was also adopted in the context of
multicast [1]. However, the service hierarchy of our interest
has aunicastcommunication model that results in a very
different design. The redundant links in [1] are randomly
built between any two nodes and used to efficiently flood
the multicast tree. In contrast, HOURS establishes hierar-
chical overlays, and explores the sibling and nephew point-
ers to forward a query to a single destination node.

A number of overlay techniques [22][19][20][13] have
been proposed in the context of peer-to-peer (P2P) network-
ing. See [15] for a general framework of such DHT-based
designs. HOURS overlay differs from existing P2P designs
in two aspects. First, most P2P designs to date focus on
network performance (scalability, efficiency, latency, etc.),
while DoS resilience is our primary design goal. Second,
the P2P designs are fully distributed and sophisticated. In
contrast, HOURS takes advantage of the readily available
centralized membership information of each overlay to sim-
plify its design.

The Symphony P2P protocol [14] is probably the most
relevant work to HOURS. The base design of our random-
ized overlay is similar to Symphony, as both are inspired by
the small world paradigm [12]. However, we propose sev-
eral mechanisms in the enhanced design to improve its DoS
resilience. Together with the hierarchical overlay architec-
ture, we can achieve high degree of DoS resilience in an
open service hierarchy. We also present a thorough analy-
sis to quantify the effectiveness of our design.

9. Conclusion

In this paper we propose HOURS that achieves DoS re-
silience in an open service hierarchy. HOURS preserves the
original hierarchical structure, and augments it with hierar-
chical overlay networks. When certain nodes are under DoS
attacks, user queries are routed across the overlays to bypass
the failed nodes and reach the destination. HOURS also ex-
ploits several simple mechanisms to enhance each overlay
and defeat large-scale topology-aware DoS attacks. The ef-
fectiveness of HOURS is confirmed through both analysis
and simulations.

HOURS is compatible with the current hierarchical sys-
tem implementation and incrementally deployable. It works
in concert with proactive solutions, such as server replica-
tion, that enhance the DoS resilience of individual nodes.
Together they create multi-fence against DoS attacks to-
wards building a highly resilient open service hierarchy.

References

[1] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Re-
silient Multicast using Overlays. InSIGMETRICS, 2003.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implica-
tions. In INFOCOM, 1999.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wal-
lach. Security for structured peer-to-peer overlay networks.
In OSDI, 2002.

[4] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Us-
ing a Peer-to-peer Lookup Service. InIPTPS, 2002.

[5] R. Douceur. The Sybil Attack. InIPTPS, 2002.
[6] D. Eastlake. Domain Name System Security Extensions.

RFC 2535, 1999.
[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and

T. Ylonen. SPKI Certificate Theory.RFC 2693, 1999.
[8] A. Habib, M. Hefeeda, and B. Bhargava. Detecting Service

Violations and DoS Attacks. InNDSS, 2003.
[9] J. Ioannidis, S. Bellovin. Implementing Pushback: Router-

Based Defense Against DDoS Attacks. InNDSS, 2002.
[10] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS Perfor-

mance and the Effectiveness of Caching. InIMW, 2001.
[11] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure

Overlay Services. InSIGCOMM, 2002.
[12] J. Kleinberg. The small-world phenomenon: An algorithmic

perspective. InSTOC, 2000.
[13] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable

and Dynamic Emulation of the Butterfly. InPODC, 2002.
[14] G. Manku, M. Bawa, and P. Raghavan. Symphony: Dis-

tributed Hashing in a Small World. InUSENIX USITS, 2003.
[15] G. Manku. Routing Networks for Distributed Hash Tables.

In PODC, 2003.
[16] P. Mockapetris. Domain Names - Concepts and Facilities.

RFC 1034, 1987.
[17] D. Moore, G. Voelker, and S.Savage. Inferring Internet

Denial-of-Service Activity. InUSENIX Security Symposium,
2001.

[18] K. Park, and H. Lee. A Proactive Approach to Distributed
DoS Attack Prevention Using Route-based Packet Filtering.
In SIGCOMM, 2001.

[19] S. Ratnasamy, R. Karp, P. Francis, M. Handley, and
S. Shenker. A Scalable Content-Addressable Network. In
SIGCOMM, 2001.

[20] A. Rowstron, and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InIFIP/ACM Middleware, 2001.

[21] S. Savage, D. Watherall, A. Karlin, and T. Anderson. Practi-
cal Network Support for IP Traceback. InSIGCOMM, 2000.

[22] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. InSIGCOMM, 2001.

[23] H. Yang, H. Luo, Y. Yang, S. Lu, and L. Zhang. HOURS:
Achieving DoS Resilience in an Open Service Hierarchy.
WING Technical Report, CS Dept, UCLA, 2003.

[24] W. Yeong, T. Howes, and S. Kille. Lightweight Directory
Access Protocol.RFC 1777, 1995.

[25] H. Zhang, A. Goel, and R. Govindan. Using the Small-
World Model to Improve Freenet Performance. InINFO-
COM, 2002.

[26] http://www.caida.org/projects/dns-analysis/oct02dos.xml

