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ABSTRACT

Rate adaptation is a mechanism unspecified by the 802.11
standards, yet critical to the system performance by exploit-
ing the multi-rate capability at the physical layer. In this pa-
per, we conduct a systematic and experimental study on rate
adaptation over 802.11 wireless networks. Our main contri-
butions are two-fold. First, we critique five design guidelines
adopted by most existing algorithms. Our study reveals that
these seemingly correct guidelines can be misleading in prac-
tice, thus incur significant performance penalty in certain
scenarios. The fundamental challenge is that rate adapta-
tion must accurately estimate the channel condition despite
the presence of various dynamics caused by fading, mobility
and hidden terminals. Second, we design and implement a
new Robust Rate Adaptation Algorithm (RRAA) that ad-
dresses the above challenge. RRAA uses short-term loss ra-
tio to opportunistically guide its rate change decisions, and
an adaptive RTS filter to prevent collision losses from trig-
gering rate decrease. Our extensive experiments have shown
that RRAA outperforms three well-known rate adaptation
solutions (ARF, AARF, and SampleRate) in all tested sce-
narios, with throughput improvement up to 143%.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]:Network Architecture and De-
sign[Wireless communication]

General Terms:Design, Experimentation, Performance
Keywords: Rate Adaptation, 802.11

1. INTRODUCTION

Rate adaptation is a link-layer mechanism critical to the
system performance in IEEE 802.11-based wireless networks,
yet left unspecified by the 802.11 standards. The current
802.11 specifications mandate multiple transmission rates at
the physical layer (PHY) that use different modulation and
coding schemes. For example, the 802.11b PHY supports
four transmission rates (1~11 Mbps), the 802.11a PHY of-
fers eight rates (6~54Mbps), and the 802.11g PHY sup-
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ports twelve rates (1~54Mbps). To exploit such multi-rate
capability, a sender must select the best transmission rate
and dynamically adapt its decision to the time-varying and
location-dependent channel quality, without explicit infor-
mation feedback from the receiver. Such an operation is
known as rate adaptation. Given the large numerical span
among the available rate options, rate adaptation plays a
critical role on the overall system performance in 802.11-
based wireless networks, such as the widely deployed WLANSs
and the emerging mesh networks.

In recent years, a number of algorithms for rate adapta-
tion [1, 2, 12, 8, 3, 4, 10, 5, 6, 7, 9] have been proposed in the
literature, and some [1, 12, 8] have been used in real prod-
ucts. Their basic idea is to estimate the channel quality and
adjust the transmission rate accordingly. This is typically
achieved by using a few metrics collected at the sender and
the associated design rules. The widely used metrics include
probe packets [1, 2, 8], consecutive successes/losses [1, 2, 6],
PHY metrics such as SNR [4, 3, 6], and long-term statistics
[12]. Examples of the commonly used rules include increas-
ing rate upon consecutive successes, using probe packets to
assess new rates, etc. While all such metrics and rules seem
intuitively correct and each design has its own merits, little
is known about how effectively they perform in a practical
setting. The fundamental problem is that real-world wire-
less networks exhibit rich channel dynamics including ran-
dom channel errors, mobility-induced channel variation, and
contention from hidden stations. Each of the above metrics
and associated design rules has limited applicable scenarios.
Consequently, each design has its own Achille’s heel.

In this paper, we conduct a systematic and experimental
study to expose the challenges for rate adaptation and ex-
plore new design space. To this end, we first use experiments
and simple analysis to critically examine five design guide-
lines followed by most existing algorithms. These guidelines
include: (1) decrease transmission rate upon severe packet
loss, (2) use probe packets to assess the new rate, (3) use
consecutive transmission successes/losses to decide rate in-
crease/decrease, (4) use PHY metrics to infer new transmis-
ston rate, and (5) long-term smoothened operation produces
best average performance. For experimental comparison, we
implement three popular algorithms (ARF [1], AARF [2],
SampleRate [8]) on a programmable AP platform, together
with the ONOE algorithm [12] available in MADWIiF1i [17].
We not only identify the issues with these algorithms using
experiments, but also take a microscopic view of their run-
time behavior and gain insights on the root causes of the
issues. Our experiments surprisingly show that the above



Figure 1: Experimental floor plan.

five seemingly valid guidelines can be quite misleading in
practice, and may incur significant performance penalty of
up to 70% throughput drop. In fact, we even discovered
that with mild link-layer contention, these rate adaptation
designs not only fail to facilitate throughput improvement,
but also reduce the throughput and aggravate channel con-
tention because rate decrease is falsely triggered.

To address these challenges, we design and implement a
Robust Rate Adaptation Algorithm (RRAA) based on two
novel ideas. First, we use short-term loss ratio in a win-
dow of tens of frames to opportunistically guide the rate
selection. Such a loss ratio provides not only fresh but
also dependable information to estimate the channel qual-
ity. Second, we leverage the per-frame RTS option in the
802.11 standards, and use an adaptive RTS filter to sup-
press collision losses with minimal overhead. We implement
RRAA on a programmable AP platform and evaluate its
performance using thorough experiments as well as field tri-
als. Our results show that RRAA consistently outperforms
three well-known algorithms of ARF, AARF and SampleR-
ate in all scenarios with 802.11a/b channels, static/mobile
stations, TCP/UDP flows, with/without hidden stations,
and in controlled /uncontrolled environments. The through-
put improvement of RRAA over these algorithms can be as
high as 143% in realistic field trials.

The two key contributions of this paper are as follows.
First, we provide a systematic critique on five design guide-
lines in the state-of-art rate adaptation algorithms. Second,
we design, implement and evaluate a robust rate adaptation
algorithm, which addresses all these identified issues and is
fully compliant with the 802.11 standards.

The rest of the paper is organized as follows. Section
2 introduces the background and Section 3 describes our
experimental system and methodology. Section 4 examines
five design guidelines in existing rate adaptation algorithms.
Section 5 presents the design of our robust rate adaptation
algorithm, and Section 6 describes the implementation and
evaluates its performance. Section 7 discusses the related
work, and Section 8 concludes the paper.

2. BACKGROUND

We consider a practical 802.11-based wireless LAN or mesh
network scenario. Both clients and access points (APs)/mesh
routers use 802.11 a/b/g devices. The clients may roam
but the APs/mesh routers are typically static. The physi-
cal layer operates at 2.4GHz for 802.11b/g or at 5Ghz for
802.11a, which only has a limited number (e.g., 3 for 802.11
b/g) of independent channels. Thus, multiple APs within
a geographic locality may have to share one of these chan-
nels. This readily leads to hidden stations among APs and
clients. In our campus building environment, we can eas-
ily sniff about 4~10 APs and 50~100 clients on any given

802.11 b/g Channel 1, 6, or 11 during regular office hours,
and they may act as hidden stations among one another.

The default operation mode for wireless LAN/mesh net-
work is the 802.11 DCF, in which an DATA-ACK exchange
is performed between the client and the AP /mesh router af-
ter carrier sensing. To avoid collisions from hidden stations,
the 802.11 standards recommend to use RTS/CTS hand-
shake. However, in practice RTS/CTS is turned off in most
deployed wireless LANs to reduce the signaling overhead.

Rate adaptation allows for each device to adapt the run-
time transmission rate based on the dynamic channel condi-
tion. It has been used by all 802.11a/b/g devices in reality.
An 802.11b device can use four rate options of 1, 2, 5.5,
11Mbps. An 802.11a device can use eight rate options of 6,
9, 12, 18, 24, 36, 48, 54Mbps. An 802.11g device can use
all twelve rate options. The goal of rate adaptation is to
maximize the transmission goodput at the receiver’. It ex-
ploits the PHY multi-rate capability and enables each device
to select the best rate out of the mandated options. Rate
adaptation is typically implemented at both the AP and the
client, and the exact algorithm is left to the vendors.

In the current 802.11 standard, a receiver does not provide
explicit feedback information on the best rate or perceived
SNR to the sender. Therefore, most practical rate adap-
tation algorithms [1, 2, 12, 8, 6, 10] make decisions solely
based on the ACK, which is sent upon successful delivery of
a DATA packet?. The sender assumes a transmission failure
if it receives no ACK before a timeout.

3. EXPERIMENTAL METHODOLOGY

The evaluation results presented in this paper are all ob-
tained from real experiments. In this section, we describe
our experimental platform, setup and methodology.
Programmable AP Platform Our experiments are con-
ducted over a programmable AP platform. The AP uses
Agere 802.11a/b/g chipset and supports all three types of
clients. The 802.11 MAC is implemented in the FPGA
firmware, to which we have access. The platform has sev-
eral appealing features that facilitate our research on rate
adaptation. First, we can program our own rate adaptation
algorithm, import other existing algorithms, and run them
at the AP. Second, it provides per-frame control functional-
ities. We can perform per-frame tracing of various metrics
of interests, such as frame retry count and SNR value. The
maximum retry count and RTS option can be configured
in real time on a per-frame basis. We may also control
the transmission rate for each frame retry, similar to the
MADWIiFi device driver for Atheros chipset. Third, it sup-
ports all 802.11a/b/g channels and devices, and is compliant
to 802.11 standards. Fourth, the feedback delay from the
hardware layer is small; this implies that timely link-layer
information is available to rate adaptation.

Experimental Setup We conduct all our experiments in
a campus setting. Figure 1 shows the floor-plan of the build-
ing where we run experiments. Spot AP is the location of
the programmable AP, and spot H is another AP spot in-
side a conference room. The AP at H periodically broad-
casts packets for its clients, but acts as a hidden station for

!Goodput and throughput carry the same meaning in this
paper.

2In this paper, we use packets and frames interchangeably,
with a slight abuse of notation.



the programmable one at AP. Spots P1, P2, P3, P4, P5, R
represent six different locations where the receiving clients
are placed during the experiments.

In most cases, the AP serves as the sender for the wireless

traffic since we only implement the algorithms on the AP. All
client devices run the Linux 2.6 kernel with CISCO Aironet
802.11a/b/g Adapters. The wireless device driver on the
client side is MADWiFi.
Experimental Methodology We run experiments us-
ing various settings with static/mobile clients, on 802.11 a/b
channels, with/without hidden stations. All these scenarios
occur in realistic 802.11 networks. The static settings evalu-
ate the stability and robustness of an algorithm, i.e., whether
it can stabilize around the optimal rate and how sensitive
it is to random losses. The mobility settings evaluate how
responsive an algorithm is in adapting to significant channel
variations perceived by mobile clients. Finally, the hidden-
station settings assess how an algorithm performs under col-
lision losses. This setup represents the real-life scenario of
ad-hoc deployment of 802.11b/g APs sharing the 2.4GHz
channels in residential, campus, or city environments.

To conduct repeatable experiments and provide fair com-
parison among different algorithms, we perform most exper-
iments in a controlled manner to minimize the impact of ex-
ternal factors, such as people walking around, microwaves,
and traffic from other AP or client devices. Specifically,
these experiments are done during midnight when the of-
fices are empty, and we use an additional sniffer to ensure
no background traffic exists over the channel in use. We use
Channel 14 for 802.11b experiments because our sniffer can
detect at least 4 APs and 30~50 clients over each of Chan-
nels 1, 6, 11 at all time. For 802.11a experiments, we use
Channel 60, and no AP or client is using this channel during
our experiments. Finally, we run a set of uncontrolled field
trials, using 802.11b Channel 6, during the office hours to
evaluate how different algorithms perform in realistic sce-
narios.

We conduct each experiment for multiple runs, and the
result presented is the average over all runs. Each run lasts
for 60 seconds in the static setting and the hidden station
cases. Each mobility test lasts about 200 seconds. We ex-
periment with both UDP and TCP traffic. For UDP, We
use iperf [14] as the traffic generator, and vary the sending
rate from 5Mbps to 30Mbps at an increment of 5Mbps. The
results reported in the paper are based on the sending rate
that produces the highest goodput. We also vary the packet
size in our experiments. To stay focused, we only present
the results with 1300-byte packets in this paper.

We evaluate and compare five rate adaptation algorithms
in our experiments. Four of them, i.e., ARF [1], AARF
[2], SampleRate [8], and the proposed RRAA, are imple-
mented by us and run on our programmable AP. The fifth
one, ONOE [12], is implemented by MADWiFi [17], and
runs on the Linux client devices.

These selected algorithms provide a good sample of rep-
resentative designs in the literature. ARF is the first rate
adaptation design for 802.11 networks and has inspired many
followup proposals [2, 5, 6]. It sends a probe packet upon
either 10 consecutive transmission successes or timeout of 15
transmissions. A probe packet is sent at a rate higher than
the current one in use. If the probe packet succeeds, ARF
increases the transmission rate. Meanwhile, ARF decreases
the rate upon two consecutive transmission failures. While

the probing threshold is fixed as 10 consecutive successes in
ARF, AARF improves the stability by doubling the prob-
ing threshold (with a maximum bound of 50) when a probe
packet fails. The probing threshold is reset to its initial
value of 10 whenever the rate is decreased. SampleRate is
arguably the best reported algorithm for static settings. It
maintains the expected transmission time for each rate, and
updates it after each transmission. A frame is transmitted at
the rate that currently has the smallest expected transmis-
sion time. In addition, for every 10 frames, SampleRate also
sends one probe packet at another randomly selected rate.
While in principle receiver-based designs such as RBAR [3]
and OAR [4] may yield good performance, they cannot be
implemented on current 802.11 devices without modifying
the standard. Thus, we are unable to implement and evalu-
ate such algorithms.

4. ON STATE-OF-THE-ART RATE ADAP-
TATION ALGORITHMS

Most current rate adaptation designs follow a few guide-
lines that are conceptually intuitive and seemingly effective.
However, our study shows that they can be misleading in
practice and incur significant performance penalty. In this
section, we first revisit the solution space and categorize the
existing designs in Section 4.1. We then critically examine
five commonly adopted design guidelines using experiments
and simple analysis in Section 4.2.

4.1 Solution Space for Rate Adaptation

At its core, each rate adaptation algorithm should possess
at least two basic mechanisms:
Estimation: It either directly estimates the best transmis-
sion rate based on the current channel and network condi-
tions, or indirectly infers the best rate by gauging how well
the currently chosen rate performs.
Action: Given the latest estimation result, it decides when
and how the transmission rate is updated.

Based on how these two mechanisms are implemented, we
can categorize various rate adaptation designs into several
general approaches.

4.1.1 Estimation

To design the estimation mechanism, one must address
the following two questions. First, what information can
be used in the estimation? Specifically, which layer is the
information collected from, and what types of messages are
taken into account? Second, given the collected information,
how should the best transmission rate be estimated?

Which layer to use: There are three approaches that col-
lect information from different layers of the protocol stack.
The first one is the Physical-layer approach that uses SNR
or other PHY metrics to directly estimate the channel qual-
ity (e.g., RBAR [3], or OAR [4]). The second one is the
Link-layer approach that uses frame transmission results to
indirectly infer the channel quality (e.g., ARF [1], AARF [2],
SampleRate [8], ONOE [12]). The last one is the Hybrid ap-
proach that combines both PHY and link-layer information
(e.g., HRC [6]).

Which message to use: The link-layer information can
be collected based on either data or signaling frames, or
both. For the Data-frame approach, rate adaptation uses



only the data frames to assess the channel quality. It can be
further classified into two subcategories. The first one is a
probing approach in which a few data frames are occasion-
ally transmitted at a rate different from the current one to
“probe” the channel (e.g., ARF [1], AARF [2], SampleRate
[8]). The second one is the non-probing approach that never
sends out probe frames (e.g., our proposed RRAA). For the
Signaling-frame approach, rate adapataion takes into ac-
count the RTS/CTS handshake to better infer the causes
of frame losses (e.g., RBAR [3], OAR [4], CARA [10]).

How to estimate: The physical-layer approach typically
translates the measured SNR into a best transmission rate
based on pre-defined mappings. On the other hand, the
link-layer (or hybrid) approach needs to estimate the chan-
nel quality based on the outcome of previously transmitted
frames. The estimation can be done via: 1) Deterministic
pattern that treats consecutive frame successes/failures as
the indication of good/bad channel condition (e.g., ARF [1],
AARF [2]), and 2) Statistical metrics that use long-term or
short-term frame statistics to statistically estimate the best
possible rate (e.g., SampleRate [8] or RRAA).

4.1.2 Action

In general, there are two approaches to adjusting the rate
based on the aforementioned estimation. The first approach
is Sequential rate adjustment, which means to increase (or
decrease) the current rate by one level when the channel
is good (or bad). In other words, the rate is adjusted by
at most one level at a time. The second one is Best rate
adjustment, which means to immediately change the rate to
the one that may yield the best performance. In such cases,
the rate may jump or drop by multiple levels at a time.

4.2 Critiques on Current Design Guidelines

Given the above solution space for rate adaptation, the
state-of-the-art algorithms have been using several design
guidelines streamlined through the extensive practice of var-
ious algorithms over the past fifteen years. In this section,
we use real experiments to provide a critique on them. We
show that while such guidelines are useful in certain pre-
sumed scenarios, they can be misleading in other cases. In
the worst case, they yield unexpected, erroneous results.

ARF | AARF | SampleRate | FixedRate

Goodput (Mbps) | 0.65 0.56 0.58 1.46

Loss Ratio 61% 60% 59% 60%

Table 1: Performance of different rate adaptation algo-
rithms in the presence of hidden stations.

contention even worse because it prolongs the transmission
time for each packet, which aggravates channel collisions and
further reduces the rate.

Our experiment also confirms the above findings as shown
in Table 1. We place a hidden AP at spot H, a receiver at
spot R, and a sender at spot AP. The sending AP and the
hidden AP are not aware of each other. We compare ARF,
AARF, and SampleRate with the operation of turning off
rate adaptation and using fixed rate (called FixedRate). In
the absence of hidden AP, all algorithms are sending more
than 95% of packets at the highest rate 11Mbps, and the
frame loss ratio is also relatively low at about 5.5%. How-
ever, when the hidden AP starts to broadcast packets to its
clients at a mild rate of 0.379Mbps, receiver R experiences
about 60% losses for all algorithms. The heavy loss triggers
the sender’s rate adaptation algorithm to decrease its send-
ing rate to 1Mbps. Overall, this leads to the throughput
around 0.56~0.65Mbps for ARF, AARF, and SampleRate.
In contrast, if we turn off rate adaptation and fix the rate
at 11Mbps, the throughput is 1.46Mbps, about 124.6% to
160.7% higher than that of the three algorithms. These ex-
perimental results show that improper rate adaptation not
only fails to improve the system performance, but also re-
duces the achievable throughput. More results in the hidden
station environment will be presented in Section 6.

The fundamental problem is that rate adaptation may ex-
perience much richer set of packet loss scenarios in practice,
which are well beyond the simplistic one of only fading/path
loss envisioned by the original designs. The guideline of de-
creasing rate upon severe packet loss does not apply in other
lossy scenarios. The rate adaptation solution has to differ-
entiate various losses and react accordingly.

4.2.2 Guideline #2: Use probe packets to assess pos-

sible new rates

4.2.1 Guideline#1: Decrease transmissionrate UpoN  The second guideline uses one or multiple probe packets

severe packet loss

The first guideline states that, whenever severe packet loss
occurs, rate adaptation should decrease its current transmis-
sion rate. This has been widely used in almost all existing
algorithms [1, 2, 12, 8, 6]. Severe packet loss is typically
detected via excessive retry counts, beyond-threshold frame
losses, or successive transmission failures. The original mo-
tivation for this rule is that, whenever the link condition
between the sender and the receiver deteriorates and thus in-
curs significant losses at the current rate, the sender switches
to lower rates to adapt to the worsening channel condition.

The above rule is easily broken in practice when hidden
stations exist. In the presence of hidden stations, a receiver
may experience significant packet losses. This subsequently
triggers rate adaptation at the sender to decrease its rate ac-
cording to the stated guideline. However, the sender should
not decrease its transmission rate upon hidden-station in-
duced losses, because reducing the rate cannot solve the con-
tention problem. In fact, reducing the rate will make channel

to learn the channel status at transmission rates other than
the one currently in use. The probe packets are data frames
sending at a different transmission rate. The goal is to de-
termine whether other rates will yield better performance.
If the results from such probe packets indeed lead to higher
throughput, rate adaptation will switch to the new, typically
higher rate. In the existing algorithms, probe packets will
be sent out at the next higher rate after multiple successful
transmissions at the current rate [1, 2, 6], or at a randomly
selected rate once every tens of packets [8].

The above design guideline also has two downsides, as il-
lustrated by our simple analysis. First, a successful probe
can be misleading and trigger incorrect rate increase. In the
literature, algorithms such as ARF, AARF, and HRC use a
single probe packet to assess the channel at a higher rate.
Whenever such a single probe packet is successfully trans-
mitted at the higher rate, such algorithms decide to increase
the rate accordingly. Now consider the following realistic
case. The sender and the receiver have near-perfect trans-
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cess/failure transmission after n con-
secutive success/failure transmissions.

missions at 12Mbps, but suffer from 40% loss at a higher rate
of 18Mbps. That means, a single probe sent at 18 Mbps has
60% chance to get through. However, the expected through-
put for sending packets at 18Mbps with 40% loss is smaller
than the one at 12Mbps with near zero loss. From our ob-
servations, most immediate higher rates in reality have less
than 50% loss percentage. Therefore, the chance of success
for a single probe is usually higher than 50%, and such a
success can be misleading.

Second, an unsuccessful probe can incur severe penalty on
future rate adaptation. We use the SampleRate algorithm
[8] as an example to illustrate the problem. In SampleRate,
probe packets are regularly sent at every ten-packet inter-
val and transmitted at a randomly chosen rate. The im-
plementation of SampleRate in MadWiFi uses exponential
weighted moving average (with a weighting factor of 0.05
for the latest sample) to statistically update the per-packet
expected transmission time at a given rate. The real issue
is that such a statistical update based on probe is too sen-
sitive to (possibly rare) failure of probe packets. This hap-
pens when the expected transmission times for two rates are
very close. For example, in 802.11a/g devices, the lossless
transmission times at 54Mbps and 48Mbps are 534ms and
560ms?>, respectively, for 1400B packets. Consider the case
where SampleRate currently operates at 48Mbps but probes
at 54Mbps. A single probe failure (say, the total retry count
is 4) at 54Mbps will update the expected transmission time
at 54Mbps as 625ms. Therefore, this single probe failure
prevents the rate adaptation from switching to 54Mbps for
an extended period of time. A detailed calculation shows
that it takes 25 lossless probes for SampleRate to change
625ms into a value smaller than 560ms, the lossless time at
48Mbps. Considering that each probe packet is sent once
every ten frames, it takes 250 frame transmissions for Sam-
pleRate to eventually switch to 54Mbps. The consequence
is that this suboptimal rate reduces throughput even with
rare probe failure. Our real experiments also confirm this
discovery in reality, as we will document in Section 6.

The fundamental problem is that statistically small num-
ber of probe samples may yield inaccurate rate adaptation.
It can be overly optimistic upon a probe success, or too
pessimistic upon a probe failure.

3We obtain these values by using the equation given in [8].

packets separated by x ms in time.

4.2.3 Guideline #3: Use consecutive transmission

successes/losses to increase/decrease rate

The third guideline states that, upon multiple consecutive
transmission successes (say, 10 in ARF [1], AARF [2], and
HRC [6]), the current rate should be increased to the next
higher rate; upon back-to-back transmission failures (say, 2
in ARF, AARF and HRC, or 4 in SampleRate), the rate
should be decreased to a lower one.

Our experiments show that the above design guideline is
not valid in many practical scenarios. In our experiments,
we turn off rate adaptation as well as the frame retry. We
place the AP and the client at different spots, and manually
fix the transmission rate which gives the highest through-
put, for each experimental run. The success/failure event
for each packet transmission is recorded inside the AP. The
cumulative distribution probability for n consecutive trans-
mission successes/failures is plotted in Figure 2.

We make two observations from Figure 2. First, the prob-
ability for a failed transmission following at least two con-
secutive failures is only 36.8%. This result means that with
63.2% chance, a successful tranmission will occur after two
or more consecutive failures. Therefore, decreasing current
rate upon consecutive transmission failures may not be the
right choice statistically. Second, the probability for a suc-
cessful transmission following at least 10 consecutive suc-
cesses is only 28.5%. Thus, the chance for a failed transmis-
sion following 10 consecutive successes is 71.5%. This result
indicates that consecutive transmission successes cannot be
a reliable metric to predict the next transmission rate.

The fundamental problem is that most realistic scenar-
ios exhibit randomly distributed loss behaviors. Any deter-
ministic pattern of transmission successes/failures may not
occur with large probability in all cases.

4.2.4 Guideline #4: Use PHY metrics like SNR to

infer new transmission rate

The next guideline suggests to use the physical-layer met-
rics, such as the signal-to-noise ratio (SNR), for rate estima-
tion. This has been used to estimate rates in the presence
of client mobility in HRC [6]. It has also been applied in the
receiver-based rate adaptation algorithms such as RBAR [3]
and OAR [4]. In theory, such physical-layer metrics may
indeed lead to an accurate rate estimation.

However, the above design rule encounters severe diffi-
culties in practical 802.11 systems for two reasons. First,



Sampling intervals (ms) | 5000 | 1000 | 500 | 100
UDP Goodput (Mbps) | 14.9 | 15.3 | 16.5 | 17.1

Table 2: Performance of ONOE with different sampling
intervals.

earlier experimental studies [13, 8] already show that there
is no strong correlation between SNR and delivery proba-
bility at a rate in a general case. Second, our experiments
show that the SNR variations also make the rate estimation
highly inaccurate. In our experiment, we send back-to-back
UDP packets from the AP to the client (located at P1) and
sample the SNR value. Figure 3 plots the SNR value for each
received packet. The figure indicates that it is common for
the SNR value to have variations of 5dB between consecu-
tive transmissions. In some cases, the variation can be as
large as 10~14dB. This large SNR variation can easily lead
to more than one-rate-level deviation out of the multi-rate
options when translating to the transmission rate, based on
the goodput versus SNR mapping (Figure 7 of [5]).

In our experiments, we also tried other two physical-layer
metrics, the background energy level (with the intention to
differentiate fading loss and collision loss), and received sig-
nal strength indication (RSSI). However, neither metric can
be directly used to estimate the rate accurately, nor can one
be used to differentiate loss causes.

4.2.5 Guideline #5: Long-term smoothened opera-

tion produces best average performance

This guideline suggests to use long-term smoothened op-
eration in the presence of random losses over the channel.
The operation can be either rate estimation or rate change
action, or both. In rate estimation, this rule recommends to
use long-term statistical information to estimate the optimal
transmission rate. For example, popular algorithms ONOE
[12] and SampleRate [8] both collect packet-level statistics
(in terms of loss and throughput) over a period of one to ten
seconds. In rate change decision, this rule suggests to only
change rates infrequently, say, once every 1 or 10 seconds.
In both cases, the underlying hypothesis is that long-term
estimation/action will smoothen out the impact of random
errors and lead to best average performance. Our experi-
ment and analysis based on information theory invalidate
both claims.

We first show through experiments that long-term rate
estimation and rate change action over large sampling pe-
riods will not yield best average performance. The experi-
ment is conducted using the ONOE algorithm implemented
in MADWiFi. ONOE uses one second as the default sam-
pling interval. It changes its rate based on the packet-level
loss statistics collected over each sampling period. In the ex-
periment, the sender located at P2 of Figure 1 uses ONOE
to send packets to the AP. We vary the sampling period and
the results are given in Table 2. The table clearly shows that
small sampling period of 100ms actually produces the best
average performance in the long term. Using large sampling
period may lead to 12.9% throughput reduction. In fact,
similar results have also been reported in early studies (Fig-
ure 3.5 of [8]). One reason for this performance drop is that
the algorithm is unable to exploit the short-term opportunis-
tic gain over the wireless channel, which typically occurs at
the time scale of hundreds of milliseconds.

We next use the concept of mutual information [16] to

show that long-term rate estimate over large sampling pe-
riods does not help even in the presence of random loss.
Mutual information indicates the mutual dependency of two
random variables, i.e., how much information one random
variable can tell about the other. We treat the transmis-
sion success/failure event at a given time as a random vari-
able and calculate the mutual information for two events at
different time instants. In an experimental setting similar
to section 4.2.3, we disable rate adaptation and the frame
retry, and record the time for each success/failure transmis-
sion. We then calculate the mutual information for each
pair of packets separated by an interval of x ms. Figure 4
plots the mutual information evolution with respect to dif-
ferent x. The figure shows that their mutual information
becomes negligible when two packets are separated by more
than 150ms over time. This implies that the success/failure
event occurred 150ms earlier can barely provide any useful
information for the current rate estimation. We also con-
duct similar experiments at different locations. All results
show that mutual information diminishes when the sampling
period becomes larger than 150~250ms. This experimental
result shows that large sampling periods, ranging from a few
seconds to tens of seconds, do not lead to more accurate rate
estimation. In this case, how to assign different weighting
factors for samples over time becomes a challenging issue.

The next experiment shows that long-term, infrequent
rate change decision may also lead to performance penalty.
The experiment is set up for the client mobility case, in
which a person carries the receiver and walks at approxi-
mately constant pedestrian speed of 1m/s. The experiment
is in 802.11b and the route is P1 — P2 — P3 — P4 —
P5 — P4 — P3 — P2 — P1 (see Figure 1), and each trip
takes about 200 seconds. In the test, we compare the perfor-
mance of ARF and SampleRate*. Both ARF and SampleR-
ate use relatively short-term rate estimation. ARF sends a
probe packet no later than 15 transmissions. SampleRate
implementation uses EWMA with a factor of 0.05, which
implies that roughly only the recent 50 samples carry major
weights in the estimation. However, the rate change actions
in both algorithms are quite different. ARF allows for rate
change every 10 or 15 packets, while SampleRate takes 2 sec-
onds to switch to a new rate (unless four consecutive losses
trigger rate decrease). Our experimental results show that,
the average UDP goodput for ARF and SampleRate are
3.85Mbps and 3.50Mbps, respectively. ARF performs 10%
better than SampleRate in the mobile client case, which
shows that the delayed rate-change decisions hurt the re-
sponsiveness of SampleRate.

5. DESIGN

In this section, we present the design of RRAA, a Ro-
bust Rate Adaptation Algorithm for 802.11-based wireless
networks. Overall, RRAA tries to maximize the aggregate
throughput in the presence of various channel dynamics.
Specifically, it seeks to achieve the following goals:

4We implemented SampleRate based on their source codes
in MADWiFi, which is different from the algorithm de-
scribed in [8]. First, while [8] averages the transmission time
over a 10-second window, the implementation uses EWMA
without any window. Second, while [8] suggests per-packet
rate decision, the rate is only changed every 2 seconds or
upon four consecutive losses in the implementation.
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e Robust against random loss: The design should main-
tain stable rate behavior and throughput performance
in the presence of mild, random channel variations.

e Responsive to drastic channel changes: The algorithm
should respond quickly to significant channel changes.
Specifically, we want the design to be highly respon-
sive in the following two scenarios: (a) The algorithm
is able to quickly track the rate decrease/increase as-
sociated with the channel change, when the channel
quality deteriorates/improves as a mobile user walks
away /towards the AP. (b) The algorithm is able to re-
spond properly in the presence of severe channel degra-
dation induced by interfering sources, e.g., hidden ter-
minals due to other 802.11 devices, and sources such as
microwaves and cordless phones operating in the same
frequency band.

While the existing algorithms may achieve certain aspects
of the above goals, they are unable to achieve all of them.

The design of RRAA is based on two novel ideas. First, it
uses short-term loss ratio to assess the channel and oppor-
tunistically adapt the runtime transmission rate to dynamic
channel variations. Second, it leverages the RTS option in
an adaptive manner to filter out collision losses with small
overhead. As shown in Figure 5, RRAA consists of three
closely interacting modules:

o Loss Estimation: It assesses the channel condition by
keeping track of the frame loss ratio within a short
time window (5 — 40 frames in our implementation).

o Rate Change: It decides whether to increase, decrease,
or retain the rate based on the estimated loss ratio.

o Adaptive RTS Filter: 1t selectively turns on RTS/CTS
exchange to suppress collision losses, and adapts the
number of RTS-protected frames to the collision level.

We next describe the loss estimation and rate change design
in Section 5.1, then the adaptive RTS filter in Section 5.2,
and finally their integration in Section 5.3.

5.1 Loss Estimation and Rate Change

To ensure standard compatability, RRAA uses only the
link-layer information of frame successes or losses in deciding
the transmission rate. However, unlike existing link-layer-
based rate adapatation algorithms [1, 2, 8], RRAA never
uses probe packets to assess possible new rates. Instead,
RRAA always adjusts the rate based on the frame loss ratio
over the previous short-term time window. Compared to

R=highest_rate;
counter=ewnd(R) ;
while true do
rcv_tx_status(last_frame);
P = update_loss_ratio();
if ( counter == 0 )
if (P > PMTL) then R
elseif (P < PORI) then R
10 counter = ewnd(R);
11 send (next_frame,R) ;
12 counter——;

next_lower_rate();
next_high_rate();

© N O WN =

Figure 6: Loss estimation and rate change in RRAA-
BASIC.

a probe frame which either succeeds or fails, the loss ratio
over many transmission samples provides more dependable
information to estimate the rate. As a result, the rates se-
lected by RRAA are highly robust to the random channel
losses.

The loss estimation and rate change algorithm in RRAA
is illustrated in Figure 6, which we refer to as RRAA-BASIC
in this paper. In RRAA-BASIC, each rate is associated with
three parameters: an estimation window size, a Maximum
Tolerable Loss threshold (MTL), and an Opportunistic Rate
Increase threshold (ORI). We will describe in Sections 5.1.1
and 5.1.2 how these parameters are chosen to select the best
rate. For simplicity, we first assume identical lengths for all
frames, then relax this assumption in Section 5.1.3.

The algorithm starts with the highest rate (i.e., 54 Mbps
for 802.11a/g or 11 Mbps for 802.11b), and adapts the trans-
mission rate in the following manner. Whenever a new rate
is chosen, it is used to transmit the next ewnd frames, which
we call an estimation window. The loss ratio is estimated
based on how many frames over this window are lost. Specif-
ically, the runtime loss ratio is calculated as

p_ #_lost_frames

(1)

where both numbers of lost frames and transmitted frames
are counted over the window and include all re-tries. When
the window finishes, a new rate is chosen based on the es-
timated loss ratio. As shown in Lines 7-11 of Figure 6, the
rate is decreased to the next lower one if the loss ratio is
larger than Pyrr. It is increased to the next higher one if
the loss ratio is smaller than Pors. In these two cases, a
new estimation window starts for the newly selected rate.
However, if the loss ratio is between Pyrr and Porr, the
current rate is retained, and the estimation window keeps
sliding forward, until the loss ratio of the most recent ewnd
frames leads to a rate change. Once the rate is changed, a
new estimation window is started accordingly.

The intuition behind the above algorithm is that a suf-
ficiently low (high) loss ratio indicates good (bad) channel
conditions, thus the rate should be increased (decreased) ac-
cordingly. However, it is non-trivial to design a rate adapta-
tion algorithm based on this seemingly simple idea. In par-
ticular, the design must address two issues: (i) what are the
loss ratio thresholds for rate increase and decrease (Parr
and Porr) respectively? and (ii) how long is the estimation
window (ewnd)? We next address these two questions.

5.1.1 Loss Ratio Thresholds

In RRAA, the loss ratio thresholds are chosen such that
the new rate can maximize the expected throughput in the

# _transmitted_frames



Rate Critical Porr | Purr | ewnd
(Mbps) [Loss Ratio (%)
6 N/A 50.00 | N/A 6
9 31.45 14.34 | 39.32 10
12 22.94 18.61 | 28.68 20
18 29.78 13.25 | 37.22 20
24 21.20 16.81 | 26.50 40
36 26.90 11.50 | 33.63 40
48 18.40 4.70 23.00 40
54 7.52 N/A | 9.40 | 40

Table 3: RRAA implementation parameters for 802.11a.

next window. In short, when the loss ratio exceeds Py,
the expected throughput at the current rate becomes lower
than that at the next lower rate, thus the rate should be
decreased. On the other hand, when the loss ratio is below
Porr, the channel is very likely ready for higher rates, and
thus the rate should be opportunistically increased.

We first consider Parr, the threshold for rate decrease.
Given a fixed frame size, we can assess the loss-free through-
put at different rates, then define a critical loss ratio as fol-
lows. For any rate R other than the base rate out of the
multiple rate options, let the next lower rate be R_. The
critical loss ratio P* for R is defined as:

PY(R)=1— Throughput(R-) _1_ tm_zéime(R) @)

Throughput(R) tx_time(R-)

That is, with a loss ratio of P*, the goodput at R becomes
the same as the loss-free goodput at R—. In other words,
one should not tolerate a loss ratio larger than P*(R) at
rate R to maximize goodput, assuming the channel becomes
lossless when the rate drops. However, given that the loss
ratio at R_ is likely non-zero in practice, we choose Pyrrr, =
aP*(R), where a > 1 is a tunable parameter, to anticipate
certain level of losses at R_.

Equation (2) also tells us that, given the transmission rate
and the frame size, the throughput can be calculated based
on the transmission time, which includes all PHY and MAC
overheads such as PHY preamble, SIFS, DIFS, slot time,
ACK, and random backoff. In our implementation, we use
the minimum backoff in the calculation, which provides us
the maximum Ppyrr and optimistic rate decisions.

Next we explain how to set Porr, the threshold for rate
increase. The challenge here is the lack of a good method to
estimate how the loss ratio changes when the rate increases.
As a result, the design may suffer either from premature rate
increase (when the threshold is too high) or from missing the
opportunity to switch to a higher rate (when the threshold
is too low). In our design, we use a simple heuristic that
sets Porr = PurlL (RJr)/ﬁ7 where PMTL(RJr) is the Pyrr
of the next higher rate. The rationale is that, the loss ratio
at the current rate R has to be small enough to make the
consequent rate increase stabilize at RT and not quickly
jump back to R. This way, the algorithm will not keep on
oscillating between R and R™. An illustrative example for
these two thresholds in 802.11a is shown in Table 3 with
a=1.25and g =2.

5.1.2 Estimation Window Size

The estimation window size ewnd is a critical parameter
in RRAA that affects the accuracy of loss ratio estimation.
It is well known in statistics that estimation based on a small

number of samples may significantly deviate from the actual
value, due to randomness in the samples. This seems to ar-
gue for the use of large estimation windows. However, as
shown in Section 4, the channel condition may fluctuate a
lot as time evolves. Thus the loss ratio in a large window is
less meaningful in guiding rate adaptation, as it is skewed by
obsolete samples. This problem can be further exacerbated
with multiple active stations, because the packets of one sta-
tion are spread out due to channel contention (for upstream
traffic) or multiplexing at the AP (for downstream traffic).

Our design balances the two conflicting needs of obtain-
ing meaningful statistics and avoiding obsolete information.
Specifically, we count the window size by the number of
transmitted frames. Because our algorithm compares the
loss ratio against Porr and Pyrr, we first ensure ewln 2 <
Porr, i.e., the estimated loss ratio is at least at a granularity
finer than the thresholds. We then gradually increase the
window size for higher rates because they can transmit more
frames within the same time period as compared to lower
rates. As an illustrative example, the final ewnd settings for
all rates in 802.11a are shown in Table 3.

To improve the responsiveness to rapid channel fluctua-
tion, e.g., due to mobility, we use an optimization technique
that allows for the transmission rate to be changed in the
middle of an estimation window. After each frame is sent,
we calculate the best (worst) possible loss ratio, assuming
the remaining frames in the window all succeed (fail). If the
best possible loss ratio already exceeds Parrr, the rate is
immediately decreased and a new estimation window starts.
Similarly, the rate is immediately increased when the worst
possible loss ratio is smaller than Porr.

5.1.3 Miscellaneous Issues

Now we describe how RRAA addresses three practical is-
sues of idle stations, multiple active stations, and variable
packet sizes.

With an idle station, it may take a long duration to trans-
mit ewnd frames. In such cases, the accumulated frame loss
ratio becomes obsolete, thus cannot be used to accurately
guide the rate adapatation. To handle idle stations, we in-
clude a timeout mechanism in the loss ratio estimation. An
estimation window is flushed after certain period of time (1
seconds in our experiments) even if less than ewnd frames
have been sent. After that, the current rate is retained while
a new estimation window starts.

We also handle multiple active stations by using small es-
timation windows. It takes roughly 20ms to transmit ewnd
frames, which is smaller than the duration (say, 150 ms) re-
quired to retain the correlation across transmissions. Thus,
with a medium number (e.g., 8) of active stations, our de-
sign still works well despite that the transmissions of these
stations are multiplexed. As the number of active stations
increases, the performance of RRA A may gradually degrade.
However, to our best knowledge, no existing designs can
well address this issue, and the fundamental barrier is that
rate adaptation cannot obtain sufficient samples to infer the
channel quality before it deviates significantly.

To handle variable packet sizes, we categorize the packet
sizes into multiple groups, and maintain a loss ratio for each
of them. Accordingly, the algorithm makes separate rate
decisions for packets with different sizes. We note that this
technique is similar to the one in the SampleRate implemen-



1 RTSWnd = O;

2 RTScounter = 0;

3 while ture do

4 rcv_tx_status(last_frame);

5 if (!RTSOn and !Success) then
6 RTSWnd++;

7 RTScounter = RTSWnd;

8 elseif (RTSOn xor Success) then
9 RTSWnd = RTSWnd/2;

10 RTScounter = RTSWnd;

11 if (RTScounter > 0) then

12 TurnOnRTS (next_frame) ;

13 RTScounter--;

Figure 7: Adaptive RTS (A-RTS) filter in RRAA.

tation of [8], while other algorithms such as ARF, AARF,
and ONOE assume the same frame size for all packets.

5.2 Adaptive RTS Filter

To be robust against hidden terminals, RRAA uses an
adaptive RTS filter to suppress collision losses when it esti-
mates the loss ratio. The basic idea is to leverage the per-
frame RTS option in 802.11 standards, and selectively turn
on RTS/CTS exchange to suppress collision losses. While
RTS is well known as an effective means to handle hidden
terminals, the main challenge faced by our design is to de-
cide when and how long RTS should be turned on or off.
Design Options There are two straightforward design
choices to suppress hidden-station-induced losses. The first
one is to turn on RTS for every frame. However, the down-
side is the excessive overhead of RTS/CTS exchange, which
can be significant with high transmission rates. This is also
why RTS is disabled in most real-life 802.11 wireless net-
works. Therefore, when RRAA decides to turn on RTS, the
throughput gain from better rate adaptation must outweigh
the overhead of RTS.

The second choice is to turn on RTS upon a frame loss and
turn off RT'S upon a frame success. This is the design used in
CARA [10] to handle a different problem of multi-client con-
tention in a single collision domain. However, when hidden
terminals exist, it suffers from the drawback of RTS oscilla-
tion, which alternates on and off for RTS. In the worst case,
one of every two frames is lost, resulting in more than 50%
throughput reduction. From the rate adaptation perspec-
tive, the sender may still experience heavy collision losses
and eventually drop the data rates.

Adaptive Scheme in RRAA  As illustrated in Figure
7, RRAA uses an adaptive RTS (A-RTS) scheme to adapt
to the dynamic collision level incurred by hidden stations.
The key state maintained by A-RTS is RT'Swnd, the RTS
window size within which all frames are sent with RTS on
(the actual number of frames being sent with RTS on is
recorded by RT Scounter). RTSwnd is initially set as 0,
which disables RTS. It is then adapted to the estimated col-
lision level as follows. When the last frame was lost without
RTS, RT Swnd increments by one because the loss was po-
tentially caused by collisions. However, when the last frame
transmission was lost with RT'S, or succeeded without RT'S,
RT Swnd is halved because the last frame clearly did not
experience collisions. When the last frame succeeded with
RTS on, RT'Swnd is kept unchanged. Note that RT'Swnd
is an integer. When it is halved from the value 1, it becomes
0 which disables RTS again. An example showing RT Swnd
evolution and RTS on/off schedule is illustrated in Figure 8.

RTSwnd 0 1 1 2 1 1 0 0

RTScounter 0 1 0 2 1 0 0 0
Loss X X X

I DATA
RTS

Frame transmitted

Figure 8: An example of RT'Swnd evolution.

1 while true do

2 rcv_tx_status(last_frame);
3 A-RTSQ);

4 if (!RTSFail) then

5 RRAA_BASIC();

6 if (RTSWnd > 3) then

7 fix_re_tx_rate();

Figure 9: The complete RRAA design: Integrating
RRAA-BASIC and A-RTS.

With A-RTS, more frames are sent with RT'S on when col-
lision losses are severe, as RTSwnd is gradually increased
by such losses. This not only protects the frame transmis-
sions from collisions but also avoids the loss ratio estimation
being poisoned by the collision losses. On the other hand,
when collision losses are mild or absent, RT'Swnd is small
(say 1 or 2) due to multiplicative decrease, and the overhead
of RTS/CTS exchange is minimized. We will evaluate the
effectiveness of A-RTS via experiments in Section 6.

5.3 Integrating RRAA-BASIC and A-RTS

While RRAA-BASIC and A-RTS address channel fluctu-
ations and hidden terminals respectively, one might think
that a simple combination of both algorithms would suffice.
However, their coherent integration is actually non-trivial
because RTS frames may also be lost due to collisions with
the hidden terminals.

Such RTS losses have dual impacts on rate adaptation.
First, when RTS fails, it is considered as a frame loss even
though the data frame is not transmitted at all, which tends
to over-estimate the loss ratio. Second, the RTS losses will
trigger retries executed in the firmware of the Atheros/Agere
chipset, which use rates lower than the one set by the soft-
ware rate adaptation algorithm. Because an RTS frame is
much smaller than a typical data frame, subsequent re-tries
of RTS may still collide with the ongoing data transmission
of a hidden terminal. In the worst case, the data frame is
discarded or transmitted at the base rate during the last
retry executed by the chipset firmware, regardless of the de-
cisions made by the software rate adaptation.

As shown in Figure 9, RRAA addresses these two issues
by applying two checks in integrating RRAA-BASIC and
A-RTS. First, a frame loss due to RTS failure is not counted
toward the loss ratio estimation. Secondly, when RT Swnd
in the A-RTS algorithm exceeds a threshold (3 in our ex-
periments), which indicates severe collisions, we disable the
firmware rate adaptation. That is, the firmware is informed
to fix the rate in the re-transmissions as specified by the
software rate adaptation module.

6. IMPLEMENTATION AND EVALUATION

In this section, we describe our implementation effort and



evaluate the performance of RRAA, using both controlled our system does not implement RTS over 802.11a channels,

experiments and uncontrolled field trials. we only evaluate RRAA-BASIC. The result does not include
. P5, since P5 is out of the 802.11a communication range.
6.1 Implementatmn Figures 10(a) and 10(b) show the goodput results on 802.11a
We implement RRAA-BASIC and RRAA on a programmable  channels for RRAA-BASIC, ARF, AARF, and SampleRate
AP platform. We also import the implementation of three at four locations of P1~P4, using UDP and TCP, respec-
other algorithm57 namely ARF’ AARF and Sanlple}{ate7 tlvely In all cases, RRAA—BASIC alWayS Outperforms the
into our platform for Comparison purposes. other three algorithms. For the UDP case, its throughput
There are two non-trivial Cha]_lenges that our implemen_ gain ranges frOm 4.5% to 67.4% at these four locations. In
tation must address. First, our AP platform avoids floating- the TCP scenario, the throughput gain of RRAA-BASIC is
point calculation, thus the runtime short-term loss ratio and between 10.3% and 45.3% compared with the worst of the
the associated two thresholds are not directly applicable. other three algorithms.
To address this issue, we count the number of lost frames, To understand why RRAA-BASIC is better than others
rather than to calculate the decimal loss ratio. Specifically, in the static setting, we record the rate decision made by
we maintain a counter to record the number of lost frames each algorithm during the experiment. Figure 11 plots the
within the current estimation window, while the loss ratio rate distribution at the sender when the client is located
thresholds are translated into the number of frame losses at spot P3. The figure shows that RRAA-BASIC trans-
before we load them into the AP. mits 79% of its packets at the rate of 24Mbps, while the
Second, to filter out collision losses, RRAA needs to know other three algorithms send only 59%~66% of packets at
whether a frame loss is incurred by RTS failures or by data this rate. Both ARF and AARF are too sensitive to ran-
transmission errors after a RTS success. While the exact loss dom channel losses. Therefore, ARF and AARF sent around
type may ultimately be available from the 802.11 chipsets, 28% and 37% of packets at 18Mbps. Compared with ARF
many existing systems do not use this information. In our and AARF, RRAA-BASIC will not decrease its transmission
implementation, we develop a RTS failure detection tech- rate unless the loss ratio is greater than the threshold. This
nique as follows. The key idea is that the transmission time shows that RRAA-BASIC is more robust to random chan-
of a 20-byte RTS frame is much shorter than that of a typ- nel losses. Our experiments at other locations also reveal
ical DATA frame. Thus by checking the time duration of a similar rate distributions.
transmission, we can infer whether RTS has failed or not. The UDP throughput results for different algorithms at
Specifically, we use the hardware feedback timestamps (in five locations using 802.11b channels are plotted in Fig-
granularity of us) to approximate the time duration 77 spent ure 10(c). In general, RRAA-BASIC performs better than
by the current transmission, which includes all frame retries. RRAA because RRAA-BASIC never sends the probing RT'S
In our system, we can extract the number of retries and the messages by default. The maximum performance difference
backoff value used in each retry. This way, we can calculate between RRAA and RRAA-BASIC is 4.6%, which happens
T, as the time spent to complete all frame retries without at spot P5. However, RRAA still achieves 0.3%~48.2%
any RTS failure. If the difference between T and Th ex- throughput gain compared with the other three algorithms.
ceeds a threshold, we infer that a RTS failure has occurred. Comparing Figures 10(a) and 10(c), we also make another
Note that this technique cannot detect the loss types with interesting observation. SampleRate works better than ARF
perfect accuracy due to unknown factors such as hardware and AARF in the 802.11b environments. This is because
processing latency and carrier sensing time. However, our SampleRate tolerates some random channel errors and does
experiments have confirmed that it can detect the vast ma- not drop to lower transmission rates as frequently as ARF
jority of RTS failures in practice. and AARF. However, SampleRate performs worse than both
ARF and AARF at spots P1 and P4 in 802.11a. P1 is the
6.2 Performance Evaluation closest location from the receiver to the AP sender. The
In this section, we evaluate the performance of RRAA- poor pe.rformance of SampleRate at P1 is already explained
BASIC and RRAA using extensive experiments and field in Section 4.2. Our experiments show that SampleRate
transmits only 82% of its packets at 54Mbps, while all other

trials. We compare them to three existing algorithms, i.e., : 0 ;
ARF, AARF and SampleRate, in various settings of static algorithms transmit 99% of packets at this rate.. The poor
clients, mobile clients, and hidden stations. The results show perfgrn}ance of Sa.mp%eRate at P 4. can be (lexplalned bylong
that RRAA constantly outperforms other algorithms in all heur‘ls.tlc us<.3d by its 1r.11p.lementat101}.. Its implementation

scenarios. Note that the performance of ARF, AARF and explicitly skips 9Mbps in its rate decisions. Therefore, Sam-

SampleRate fluctuates significantly across different scenar- p%eRate only uses 12Mbps‘and 6Mbps at P4, while skip-
: ping the rate of 9Mbps for its packets. Unfortunately, most

ios.
transmissions at 12Mbps have failed. In contrast, ARF and
6.2.1 Static Clients AARF send 50% of their packets at 9Mbps at P4, while
We first evaluate RRAA and RRAA-BASIC in static set- RRAA transmits 67% of data packets at 9Mbps.
tings where the AP and the clients remain stationary through- 6.2.2 Mobile Clients

out the experiment. The goal is to assess how well these al-
gorithms, as well as ARF, AARF, and SampleRate, respond
to random channel losses. We perform tests at five differ-
ent locations, P1, P2, P3, P4, P5 of Figure 1, where the
receiving client perceives quite different channel condition

and transmission rate. We run both UDP and TCP, over 5We used the source code of MADWIFi dated on March 14,
802.11a and 802.11b channels. For the 802.11a tests, since 2006.

We now compare RRAA and RRAA-BASIC with other
algorithms ARF, AARF, and SampleRate, in the case of
client mobility. While the static setting mainly assesses sta-
bility and robustness of a rate adaptation algorithm, the




7 T T

w
S
N
3

4.5% 10.3%

o

IS

28.2%

w

33.5%

N

—5—RRAA
—e— RRAA-BASIC
—2— ARF

—v— AARF

—— SampleRate

UDP Goodput (Mbps)

i

=)

25 —
— @ 20.
4] s 45.3%
s 47.5% 2
S 20f Ve £
= EE
3
o =]
g 28.2% =
g’ 2 10
o 10t 67.4%] |E
8 o |[—=—RRAA-BASIC
=) —6— RRAA-BASIC O
51| —=—ARF F 57| = ARF
o AARF —— AARF
—— SampleRate —+— SampleRate
0 0
P1 P2 P3 P4 P1 P2

Receiver location

(a) UDP goodput in 802.11a.

P3 P4 P5
Receiver location

(c) UDP goodput in 802.11b.

3 ~ P1 P2

Recevier Location

(b) TCP throughput in 802.11a.

Figure 10: TCP/UDP performance of ARF, AARF, SampleRate, RRAA-BASIC and RRAA. The numbers pointed
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Distribution of rates in each algorithm when UDP goodput in 802.11b with client UDP throughput and rate decision
the receiver is located at P3 (802.11a). mobility. distribution in the hidden-terminal case

mobile setting gauges its responsiveness. The experimental
setup is the same as the one we have described in Section
4.2.5.

Figure 12 shows the average throughput of different algo-
rithms using UDP for the mobile client. We can see that
both RRAA and RRAA-BASIC perform better than ARF,
AARF, and SampleRate. The throughput improvements
of RRAA over ARF and SampleRate are about 10.0% and
27.6%, respectively. This clearly demonstrates that RRAA
is highly responsive to significant channel variations incurred
by client mobility.

Another interesting observation is that SampleRate per-
forms the worst out of all algorithms. In its implementation,
SampleRate tries to limit the minimum duration between
successive rate changes to be at least 2 seconds. In contrast,
both ARF and AARF perform better because they have a
timeout mechanism that results in probing the channel at
least once every 15 packets.

6.2.3 Setting with Hidden Terminals

In this experiment, we evaluate whether RRAA can quickly
infer collision losses and adjust its rate accordingly in the
presence of hidden terminals. The experimental setting is
the same as the one described in Section 4.2.1.

Figure 13 plots the UDP goodput and the distribution
of transmission rates for the four algorithms. The results
show that RRAA always performs the best. Its throughput

(802.11b).

gain over SampleRate and AARF is about 101%, and its
gain over ARF is about 74%. We also observe that RRAA
sends 50% of its packets at 11Mbps, while ARF and AARF
send more than 85% of packets at 1Mbps and SampleRate
transmits about 42% of its packets at 1Mbps and 2Mbps
each. It is clear that ARF, AARF and SampleRate have
reduced their rates to 1~2Mbps due to the collision losses
incurred by the hidden AP. In RRAA, we can differentiate
most of such losses from fading errors using the adaptive
RTS filter mechanism described in Section 5.

6.2.4 Field Trials

After we have gained insights on the pros and cons of
different algorithms using controlled experiments, we finally
conduct a series of uncontrolled field trials over a two-day
period. The purpose is to understand how these algorithms
perform under realistic scenarios, in which various sources
of dynamics co-exist in a complex manner.

Our first field trial involves static clients only. We run six
sets of experiments and each lasts an hour. The time span
is over 6 hours from 4~10pm. Each experiment uses four
static clients, two of them are located at spot P1, and the
other two are placed at spot P2. A TCP connection is run
from the AP sender to each receiver. We intentionally select
Channel 6, which is also used by other clients and APs in the
same building. During our experiments, the sniffer detects
about 7~11 APs and 77~151 clients over Channel 6. People
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Figure 14: TCP performance in field Trials.

are walking in the corridor, stepping into and out of offices,
and even turning on microwaves during the experiments.

Figure 14 shows the experimental results with static clients
in the first field trial. The throughput gain of RRAA over
SampleRate is 3.8% on average, and the gain increases to
15.3% over ARF. In all cases, RRAA outperforms the other
three algorithms.

We also conduct another field trial using the mobile set-
ting presented earlier in Section 4.2.5, except that we use
Channel 6 during the 6-hour trial. As the client moves
around, it apparently experiences hidden terminals once a
while, due to other APs and active clients on Channel 6.
Figure 14 gives the throughput of different algorithms. The
results show that, RRAA achieves throughput improvement
of 35.6% over SampleRate and 143.7% over ARF during each
one-hour experiment.

7. RELATED WORK

Rate adaptation has been an active research topic in re-
cent years and a number of algorithms [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 12] have been proposed. It is one of the few algorithms
that are left to the vendors by the IEEE 802.11 standard,
yet its design is critical to the overall system performance.
Most existing algorithms follow the design guidelines iden-
tified in Section 4. They do not address all the robustness
issues against random channel loss, mobility, and hidden-
terminal-induced contention loss. Therefore, they do not
work well and suffer from performance penalties in realistic
settings with mobile clients, static clients with lossy chan-
nels, or hidden clients/APs.

The two components in RRAA bear superficial similarity
to some existing designs but have fundamental differences
from them. The loss ratio threshold-based scheme seems
similar to the one used in ONOE [12]. However, ONOE
uses long-term estimation (i.e. 1 second), while RRAA uses
short-term metrics to exploit the opportunistic gain asso-
ciated with transient channel dynamics. In addition, the
threshold values in ONOE are set in a rather ad hoc man-
ner, while RRAA computes its thresholds based on the ex-
pected cost and gain associated with the rate changes. The
RTS mechanism is also used in CARA [10]. However, CARA
seeks to solve a different problem of multiple clients contend-
ing for the same AP over wireless LANs. Because CARA
did not intend to address rate adaptation in hidden-terminal
settings, its design is much simpler than the adaptive RTS

filter in RRAA and suffers from RTS oscillation with hidden
stations. Moreover, CARA is designed on top of ARF, thus
inheriting the drawbacks of ARF.

8. CONCLUSION

Rate adaptation offers an effective means to facilitate sys-
tem throughput improvement in 802.11-based wireless net-
works by exploiting the physical-layer multi-rate option upon
dynamic channel conditions. In this paper, we have cri-
tiqued on five design guidelines for existing algorithms, and
proposed a new Robust Rate adaptation Algorithm (RRAA).
The key insight learned is that the rate adaptation algo-
rithm has to infer different loss behaviors and take adap-
tive reactions accordingly. We have implemented RRAA on
a programmable AP platform and compared it with three
other popular algorithms of ARF, AARF, and SampleR-
ate. Through extensive experiments, we demonstrate that
RRAA consistently outperforms all these algorithms, and
improves throughput by up to 35.6% over SampleRate and
by up to 143.7% by ARF in field trials. We believe that
our solution will benefit the widely-deployed 802.11-based
WLANS as well as the emerging mesh networks.
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