
Scheduling Delay-Constrained Data in Wireless
Data Networks

Xiaoqiao Meng*, Thyaga Nandagopal�, Starsky H.Y. Wong∗, Hao Yang‡, Songwu Lu∗
*NEC Laboratories America, Princeton, NJ 08540

�Bell Laboratories, Lucent Technologies, Holmdel, NJ 07733
∗UCLA Computer Science, Los Angeles, CA 90095

‡IBM T.J. Watson Research Center, Hawthorne, NY 10562
E-mails:*xqmeng@nec-labs.com, ∗{hywong1, slu}@cs.ucla.edu, �thyaga@lucent.com, ‡haoyang@us.ibm.com

Abstract— In modern cellular networks, the channel quality is
dynamic among users and also over time. The time-granularity
for such dynamics is significantly diverse - either slow or fast
compared to packet transmission time. Because of these issues
most existing scheduling policies can not work consistently well.
In this work, we propose a scheduling policy with performance
relatively insensitive to the time-granularity of the dynamics
of channel quality. Our policy is self-adaptive to the scale of
channel variations by using an ensemble of proposed algorithms.
The proposed scheduling policy is proved to have a worst-case
performance bound in the existence of both slow and fast time-
varying channels. Simulation results confirm that the policy
better tolerates channel variations than other popular schemes
such as EDF and the Greedy algorithm.

I. INTRODUCTION

Next-generation wireless data networks such as 3G and
WiMAX are expected to support a wide variety of real-time,
interactive applications (e.g., VoIP, mobile games, mobile TV).
Due to the nature of these applications, designing a delay-
sensitive scheduling policy, which can provide stringent delay
requirements, is important and becomes the focus of this paper.

Although delay-sensitive scheduling issue has been the topic
for a large number of work ([1][2][3][4][5], etc.), most of
them assume the underlying transmission rate is constant, i.e.,
all data packets are transmitted on the wireless channel at the
same rate. Unfortunately this assumption does not comply with
the real wireless channel characteristics. In fact the wireless
channel quality exhibits significant dynamics. Many wireless
communication systems even offer multi-rate capability by
adapting the coding, modulation and error-correction schemes
to the varying channel quality. For example, the current de-
ployment of 1xEV-DO (also known as High-Data-Rate (HDR))
[6] supports 11 discrete data rates, ranging from 38.4 Kbps to
2.4 Mbps. In addition to the fact that data rate is varying
over time, the variation itself exhibits vastly different time-
granularity due to the Doppler effect, that is, the data rate
may keep relatively constant (e.g., change once for hundreds
of time slots) when the Doppler effect is moderate. It can
change much faster (at a granularity of a few slots) when the
Doppler effects are strong.

The above channel characteristics have important implica-
tions for packet scheduling design. We can illustrate this by

comparing the time-granularity of channel variation with delay
requirement of typical delay-sensitive applications. The end-
to-end delay for VoIP must be less than 300-400 ms (following
ITU-T recommendation G.114 [7]), the typical end-to-end
delay for video traffic is about 200 ms [8]. Given such end-to-
end delay requirements, the maximum delay at the base-station
should be much smaller, say, tens of million seconds. Within
this time period, the wireless channel quality may fall into two
kinds of situations: almost constant (i.e., moderate Doppler
effects), or rapidly changing in every timeslot (i.e., strong
Doppler effects). We call them as slow time-varying channel
and fast time-varying channel, respectively. Unfortunately,
none of the existing scheduling designs can work well in both
situations.

In this paper, we propose a new scheduling policy which is
self-adaptive to the time-granularity of channel variation and
performs consistently well in both slow and fast scenarios. Our
contributions are two-fold:

• We design a scheduling policy adapt to the time-
granularity of channel variation. The proposed policy
consists of an ensemble of scheduling algorithms. Two
algorithms developed in this work, OPT UNDERLOAD
and ED-EDF, perform well in the slow time-varying
situation. On the other hand, the Greedy algorithm [9]
performs well in fast time-varying situations. When the
proposed policy is employed, the scheduler at the base
station differentiates a slow time-varying period from the
fast one, and uses the best algorithm accordingly.

• The performance of the proposed policy is also insensitive
to traffic load. For the case that the scheduler is under-
loaded1, we design an algorithm OPT UNDERLOAD to
achieve optimality. When the scheduler is over-loaded
and dropping a few packets becomes inevitable, we de-
velop another algorithm Early-Dropping EDF (ED-EDF)
which has an intelligent packet dropping mechanism
to reduce the amount of dropped throughput whenever
over-load occurs. We prove that the ratio of dropped
throughput between ED-EDF and the optimal solution is

1Here, Underloaded (overloaded) means that an optimal scheduling algo-
rithm can (cannot) transmit all the packets in the buffer.

bounded by a constant. From this perspective, ED-EDF
outperforms both the EDF and Greedy since the latter
two have unbounded ratios.

The proposed scheduling policy is analytically studied and
further evaluated by simulations. Through analysis, we show
when both slow and fast time-varying periods exist, the pro-
posed policy achieves a higher worst-case performance bound
than the popular EDF and the Greedy algorithm. Simulation
results further confirm the consistency of the proposed policy.

The rest of paper is organized as follows. Section II in-
troduces background knowledge and related work. Section
III gives an overview of our proposed scheduling policy.
The proposed policy consists of several components and is
discussed from Section IV to VI. Section VII presents the
results of our evaluation through simulations and Section VIII
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. System model

We consider wireless cellular networks in which channel
access is scheduled in slotted time intervals. Each time slot
has a fixed duration (e.g., 1.67 ms in 1xEV-DO system).
Data transmission rate might vary among time slots. A packet
scheduler implemented at the base station follows a polling-
cycle model ([10]). More specifically, the base-station pe-
riodically polls each mobile host and collects information
(e.g., deadline, packet size) about all their buffered packets.
The scheduler then arbitrates the transmission order for these
buffered data during the current polling cycle before moving to
the next cycle. We assume that channel prediction is supported
by the system. By channel prediction, the scheduler can forcast
the channel condition and further data rate within a certain
time range. We note that channel prediction is already feasible
in several real systems such as 1xEV-DO [6].

In this work, we focus on scheduling downlink delay-
constrained data flows. Multiple flows are served by the
scheduler. Each flow has continuously buffered packets each
of which has known deadline. A packet not transmitted before
its deadline is automatically discarded. We assume that packet
length is variable, and fragmentation is allowed if packet
length is too large for one time slot. In such a case, the packet
is fragmented into multiple fragments. If any fragment does
not transmit before its deadline, the entire packet is considered
lost. In every slot, only one flow is allowed to access the
channel yet it can transmit multiple packets whenver possible.

B. Notations

We use t to denote the current time slot. The slow time-
varying period is denoted by [t, t + T], T ≥ 1. Among
all buffered packets in current time slot, PT denotes those
packets with deadline within [t, t + T], and PT denotes the
rest of buffered packets. The amount of data contained by
PT and PT are |PT | and |PT | respectively. Both |PT | and
|PT | are measured by bits or bytes. Within [t, t + T], the data
rate received by flow i is constant and denoted by ri. The
maximum and minimum ri within [t, t + T] are rmax,rmin

respectively. Occasionally, we use r(i) to denote the data rate
received by packet i.

C. Existing approach

Perhaps the most commonly used delay-constrained
scheduling approach is the Earliest-Deadline-First (EDF), in
which the packet with the earliest deadline has the highest
priority. EDF is an optimal solution to a so called BASIC
network model studied by [1][2][3][4]. In BASIC model, each
flow has equal and constant data rate. Packets in the same flow
have equal length and can be transmitted in exactly one time
slot.

Nevertheless, the BASIC model does not reflect the reality
because of the aforementioned time-varying characteristics of
wireless channel. Specifically, the channel quality is varying
over time due to multipath fading and Doppler effect. In the
slow time-varying situation, data rates are constant over time,
but can be different between flows. In the fast time-varying
situation, not only data rates differ among flows but they also
vary over time. Therefore, the BASIC model is violated and
accordingly EDF is no longer optimal, Even worse, since EDF
ignores the data rate issue, in the fast time-varying situation
EDF is not able to exploit the instantaneous high data rate of
certain flows, thus leading to low system utilization.

The authors of [9] show that it is NP-hard to find the optimal
scheduling solution to maximize throughput for time-varying
channel quality and deadline-constrained packets. They pro-
pose the Greedy algorithm, which is to always pick the flow
with the highest instantaneous data rate, and show its worst-
case throughput is 1

2 of the optimal one. However, their
analysis is only applicable to our context when packet size
is equal.

III. OVERVIEW OF PROPOSED SCHEDULING POLICY

The proposed scheduling policy consists of an ensemble
of algorithms. The policy differentiates slow channel-varying
periods, where every individual flow’s rate is constant, from
fast channel-varying periods, where flow rates are varying.
The proposed policy is self-adaptive to the variation of both
channel quality and workload. In the following, we describe
the proposed policy step by step.

(I) In every time slot t, the base station uses channel
prediction to determine whether a slow channel-varying
period (denoted by the interval [t, t + T]) exists. if it
exists, go to Step II, otherwise, go to Step III.

(II) All buffered packets with deadline falling into [t, t +
T] are denoted by PT . If PT are schedulable, optimal
scheduling will be determined in linear computational
time; Otherwise, since finding the optimal algorithm is
a NP-complete problem [9][11], the following procedure
will be employed instead.

• The scheduler first needs to decide whether all
buffered packets PT are schedulable. To this
end, it tries the algorithm OPT UNDERLOAD on
scheduling PT . If no packets are left after ap-
plying OPT UNDERLOAD, the scheduler knows

that PT are really schedulable. Therefore the
schedule will perform OPT UNDERLOAD. On the
other hand, if some packets still left after trying
OPT UNDERLOAD, the scheduler knows that PT

is not schedulable. Consequently, it has to go to the
next step which corresponds to unschedulable cases.

• In unschedulable cases, the scheduler uses the algo-
rithm CHECK OVERLOAD to judge whether it is
an overloaded situation.
– If the scheduler is slightly overloaded, it uses the

proposed ED-EDF algorithm to schedule packets.
– If heavily overloaded, the well-known Greedy

algorithm [9] is used.
(III) When scheduling packets in the slow channel-varying

period is done, the scheduler further uses the Greedy
algorithm to schedule remaining packets within the fast
channel-varying period.

It is evident that in our scheduling procedure, the exact
algorithm (i.e., strategy) used in a given scenario is subject
to the time-granularity of channel variation and traffic load.
The rationale behind such algorithm switching is the different
properties of various algorithms. We emphasize that these
algorithms are not isolated. In fact, they interact with each
other in a coherent framework, and work in concert to achieve
high performance.

In the following sections, we describe each component of
the proposed scheduling policy.

IV. OPTIMAL SCHEDULING IN UNDER-LOADED

SCENARIO

As shown in Section II, a few existing solutions such as
EDF, S-OPT [3] and bipartite matching [1] are optimal for the
BASIC model in which all packets have the same length and
perceive the same time-constant transmission rate. We want to
modify the existing optimal solutions to make it still optimal
for the slow time-varying scenario: packets have different
length. Each flow perceive time-constant transmission rate yet
the rate varies among flows.

The idea is to transform the problem to a dual problem
which follows the BASIC model. The transformation ensures
that the solutions to the two problems have a one-to-one unique
mapping. Then we can readily apply EDF (or S-OPT, bipartite
matching) to solve the dual problem and map the resulting
solution back to the original problem.

Let ri denotes the throughput a flow i can transmit in one
time slot. The main idea behind the transformation is that if
flow i can send ri units of data (starting with data in packet
j) in one time slot, then we can represent these ri units of
data by one unit of data in the corresponding dual model and
tag it with the same deadline of packet j.

We illustrate the transformation by an example scenario
shown in Figure 1. The scenario contains two flows, with
data rates of 2 and 1 units/slot respectively. Flow 1 has four
buffered packets, and flow 2 has two. In the figure, packet
deadline is represented by the head of the arcs and packet
length is represented by the value near the arcs.

(2,0.6) (2,0.6)(2,0.6)(2,0.6)(2,0.6)(2,0.6)

1

0.8

1
1

1

1.5

Fig. 1. Original example scenario

(1,1)(1,1) (1,1) (1,1) (1,1)(1,1)

Fig. 2. Dual scheduling problem transformed from Figure 1 (now it follows
the BASIC model).

We can transform this scenario into a dual one shown in
Figure 2. To explain the mapping between the two scenarios,
we first look at flow 1. In the original scenario, the first
two packets in flow 1 can be transmitted in the first slot.
Correspondingly, in the dual scenario flow 1 has the first
packet with the same deadline. Next, the third packet and 2

3 of
the fourth packet (obtained via fragmentation) of flow 1 can be
transmitted together in a single slot. Correspondingly, in the
dual scenario the third packet of flow has the same deadline.
The other 1/3 of the fourth packet of flow 1 is still left. It can
be mapped to another packet with the same deadline in the dual
scenario. We further look at flow 2. Flow 2 can only transmit
0.6 units in one slot, which leaves 0.4 units of data from the
first packet. We represent the first 0.6 units by the first packet
of flow 2 in the dual scenario. For the remaining 0.4 units,
we extract 0.2 units from the second packet of flow 2, then
map such combined 0.6 units to one packet with the deadline
of the first packet in the dual scenario. We continue the above
procedure until all the packets in the original scenario are
mapped to certain packets in the dual scenario.

Since the dual scenario complies with the BASIC model,
EDF can be applied to find the optimal schedule for it. Never-
theless, the transformation is valid only when the scheduler is
underloaded, that is, all buffered packets are schedulable. The
following proposition gives the condition on whether these
packets are schedulable.

Proposition 1: Buffered packets are schedulable if and only
if

∑
i∈F N i(t) ≤ t,∀t, where N i(t) is the number of packets

of flow i with deadlines at most t.
We refer the proof (and all the other proofs in this paper)

to [12]. According to the above proposition, as long as those
buffered packets are schedulable, we can always use EDF to
solve the dual scheduling problem. The resulting schedule is
then transformed back to the optimal schedule for the original
one. We show that such a transormation is optimal as in the

Flow index 1 2
Transmission rate (Mbps) 2 1

Packet length li (bits) 400 800 2400 2400 b × 103

Packet deadline di (ms) 0.2 0.8 1.8 4.4 b + 4
CTD si (ms) 0.2 0.6 1.8 4.2 b + 4.2

TABLE I

AN OVERLOAD SCENARIO (WHEN USING EDF, THE LAST PACKET IN

FLOW 2 CANNOT BE SCHEDULED BECAUSE ITS CTD VALUE EXCEEDS THE

DEADLINE)

following proposition.
Proposition 2: Given any scheduling problem in a slow

time-varying and underloaded scenario, the transformation
described above ensures that an optimal schedule exists if and
only if there exists an optimal solution for the dual problem.
Moreover, the optimal schedule for the dual problem can be
uniquely mapped to an optimal one for the original problem.

V. SCHEDULING IN OVERLOADED SCENARIO

We now discuss how to schedule packets in slow time-
varying, overloaded scenario. An overload scenario arises due
to transient bursty traffic or lack of admission control. In such
a case, the scheduler has to decide which packets to drop and
which packets to schedule. The ultimate goal is to maximize
the total throughput, or minimize throughput that needs to be
dropped.

We thereby propose a new scheduling algorithm Early-
Dropping EDF (ED-EDF). The basic idea of ED-EDF is to
intentionally drop some unexpired packets to ensure that the
overall schedulable throughput is increased. For the purpose
of illustration, in the following we first discuss why the
Greedy and EDF do not work well in the slow time-varying,
overload scenario, then we describe ED-EDF and analyze its
performance.

A. Limits of EDF and Greedy in slow time-varying, over-
loaded scenario

For slow time-varying, overloaded scenarios, the authors of
[11] have proved that it is NP-hard to find a schedule that
maximizes the throughput. Therefore, the most widely used
scheduling algorithms in this case are those simple, heuristic
ones such as EDF and the Greedy. Nevertheless, the Greedy
and EDF do not work consistently well. We can illustrate this
point by an example. Suppose all buffered packets are sorted in
the ascending order of their deadline. In the sorted sequence,
packet i’s deadline is di and its length is li. In the example of
Table I, there are 5 buffered packets belonging to two flows.
It is obvious that EDF and the Greedy will schedule these
packets from left to right, which results an arbitrarily bad
performance. could be arbitrarily bad.

Now let us define si, the cumulative transmission duration
(CTD) for each packet i. si is the total time required for
transmitting all the packets no later than packet i (including
packet i itself). Clearly if si is larger than di, not all the packets
1, 2, . . . , i are schedulable. We thus refer to the first packet for

which si > di holds as critical packet. In the above example,
packet 5 is a critical packet since it is the only one with si >
di. Both EDF and the Greedy will drop packet 5. Nevertheless,
it is easy to see that the optimal scheduling policy here is
to drop packet 1 because when packet 1 is dropped, all the
other four packets become schedulable. To further explain this
observation, we introduce competitive ratio: the competitive
ratio for a scheduling algorithm is defined as the infimum ratio
of the throughput between the algorithm and the optimal one.
We can figure out that the competitive ratio for both EDF and
the Greedy is 6/(b + 5.6) (b is the length of the last packet),
which tends to be zero as b → ∞. As a result, both EDF and
the Greedy have zero competitive ratio.

The above example shows that EDF and the Greedy algo-
rithm may unnecessarily drop too much data in certain over-
loaded scenarios. Fundamentally, this is because when either
algorithm always drop choose the critical packets to drop
without considering any other packet dropping schemes. In
fact, other packet dropping schemes do exist - if appropriately
chosen, the total amount of data need to be dropped can be
significantly reduced. Based on this motivation, we describe a
scheduling algorithm ED-EDF which adopts a more intelligent
dropping scheme.

B. ED-EDF

Suppose there are N buffered packets. r(i) is the data rate
used for transmitting packet i. The procedure of ED-EDF is
as following:

(I) Sort the N packets in the ascending order of their
deadline.

(II) By comparing si with di, the scheduler look for the
critical packet i. If no critical packets exist, go to (IV).

(III) Given that packet i is the critical one, the scheduler
searches for a packet j with the minimum transmission
time lj

r(j) in the packet set {1, 2, . . . , i}. Packet j will
be dropped immediately. If more than one such packet
exists, the one with the earliest deadline is dropped.
Then the scheduler returns to (II).

(IV) When no more critical packets are found, the scheduler
uses EDF to transmit packets.

The core idea of ED-EDF is: ED-EDF searches all the
packets ahead of (and including) the critical packet. ED-EDF
drops the packet consuming the minimum service time and
expects that such a frugal dropping will make all the other
packets schedulable. Now if we apply ED-EDF to the example
scenario in Table I, we can easily see that ED-EDF gives the
optimal throughput.

C. Performance analysis of ED-EDF

ED-EDF does not guarantee optimal scheduling as the
optimal solution is NP-hard, yet the amount of dropped data by
ED-EDF is bounded when compared to the optimal scheme.
Such a result is formally stated below.

Theorem 1: In a slow time-varying, overloaded scenario, let
rmax, rmin be the highest and lowest data rates perceived by
flows respectively. The amount of data dropped by ED-EDF
is no more than 2 rmax

rmin
times the amount of data dropped by

the optimal scheduling algorithm that maximizes throughput.
The performance bound is tight. �

If the disparity between rmax and rmin is large, the bound in
Theorem 1 may seem to be loose. However, this is the worst-
case bound and it does not necessarily mean that the average
performance of ED-EDF is much worse than the optimal one.
Moreover, in many cases, especially when the data in flows
having the high or low rates is much smaller when compared
to the total amount of packets dropped, the worst-case bound
can be much closer to the optimal. We use an example to
illustrate this point.

Assume De and Dopt are the amount of data dropped by
ED-EDF and the optimal strategy respectively. There are three
flows in the buffer, and their data rates are 5, 1.2 and 1.
The first flow, which receives the data rate of 5 units/second,
contains only n units of data and n � Dopt. According to
Theorem 1, there is De

Dopt
≤ 2.51 = 10. Now imagine the first

flow does not exist and we compare ED-EDF and the optimal
strategy again. The amount of data dropped by ED-EDF and
the optimal strategy are denoted by D′

e,D′
opt respectively.

Since, rmax is now decreased to 1.2 units/second, we have
D′

e

D′
opt

≤ 2.1.2
1 = 2.4 by using Theorem 1. By simple reasoning

we know that Dopt − n ≤ D′
opt ≤ Dopt and De ≤ D′

e + n.

Hence, we have De

Dopt
≤ D′

e+n
D′

opt
= D′

e

D′
opt

+ n
D′

opt
≤ 2.4+ n

Dopt−n .

If n � Dopt, the ratio De

Dopt
can have a much tighter bound

than the original bound 10.

VI. OVERLOAD ESTIMATION

In the previous section, we gave a scheduling algorithm
when the data rates do not vary over time. We also showed
that while ED-EDF has a bounded performance under any
circumstance, when the packet length is equal, the Greedy
algorithm performs better once the load exceeds a certain
threshold. This threshold was shown to depend on the network
throughput capacity Copt, a quantity that cannot be directly
measured. In this section, we describe a heuristic to estimate
Copt.

Through further analysis in our technical report [12], we can
know that when channel rates are constant over time, if |PT | <
Copt(1 + γ) where γ is a constant, ED-EDF performs better
than the Greedy. Now we denote the throughput of the Greedy
algorithm in this period by Cg , we know that Cg ≤ Copt ≤
2Cg . Let the throughput of the algorithm OPT UNDERLOAD
(presented in Section IV) be denoted by Cu which satisfies
Cu ≤ Copt. Next, we use max(Cu, Cg) as an estimate for
Copt, which guarantees that the worst-case performance bound
of the proposed algorithm is much better than either ED-EDF
or Greedy.

It is always better to underestimate Copt than to over-
estimate it. This is because we do not want our worst-

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 0 20 40 60 80 100

Ou
tpu

t th
rou

gh
pu

t (M
bp

s)

Percentage of slow varying period length

EDF
Greedy

Our policy

Fig. 3. Throughput comparison when slow varying period becomes longer

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100

Lo
ss

Ra
tio

Percentage of slow varying period length

EDF
Greedy

Our policy

Fig. 4. Data loss comparison when slow varying period becomes longer

case performance to be below that of the Greedy algorithm.
Underestimating Copt will cause us to switch to the Greedy
scheduling strategy at a lighter load, while over-estimating it
will lead us to switch to Greedy algorithm at a higher load
and lead to a worst-case bound less than that of 1/2.

VII. SIMULATIONS

In this section, we use numerical simulations to evaluate the
proposed scheduling policy. Throughput and data loss ratio are
used as performance criteria. The data loss ratio is defined as
the percentage of data not transmitted before deadlines. Due to
space constraints, we only show the results for scenarios where
both slow and fast time-varying periods exist. For comparison
purposes, we simulate EDF and the Greedy algorithm as well.

We simulate a time-slotted system taking similar parameters
to the HDR network. Each time slot is 1.67 ms. The polling-
cycle model is simulated by periodically injecting traffic into
the system. The polling-cycle period is set to be Tc = 500 ms.
Tc always starts with a slow time-varying period T followed
by a fast time-varying period. We generate 20 flows in all
scenarios. Within the slow varying period T , the data rates for
the 20 flows are randomly chosen from the range [1, 5] Mbps.
In the fast time-varying period, data rates are generated from
a realistic HDR channel model. Each flow has L bits of data.
These L bits of data are converted into packets by randomly
assigning packet length from [100 bytes,2500 bytes]. The
deadline for each packet is randomly chosen from [0,Tc ms].
In this way, we can control the traffic load by tuning the values
of L and t. Each data point in all our simulation results are
averaged over 10 runs.

In the first scenario, we evaluate how the proposed pol-
icy performs when the time-granularity of channel variation
changes. To simulate different time-granularities of the varia-
tion, we fix the polling-cycle period Tc to be 500 ms, then we
vary T , the slow time-varying period length. The total traffic
arrival rate is 6 Mbps, which indicates an overloaded scenario.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

Ou
tp

ut
 T

hr
ou

gh
pu

t (
M

bp
s)

Input Throughput (Mbps)

EDF
Greedy

Our policy

Fig. 5. Comparison of throughput when network load is increasing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

Lo
ss

 R
at

io

Input Throughput (Mbps)

EDF
Greedy

Our policy

Fig. 6. Comparison of data loss ratio when network load is increasing

Now we gradually increase T . Meanwhile we measure the
performance for the three scheduling policies: the proposed
one, EDF, and the Greedy. The results, in terms of throughput
and data loss ratio, are shown in Figures 3 and 4. The two
figures show that when most of Tc is fast time-varying, namely,
the slow varying period length is close to 0, the throughput
for EDF is 2.9 Mbps, much worse than that of the Greedy
(3.5 Mbps). On the other hand, when Tc is mainly consisted
of slow time-varying periods, EDF gives a throughput of 2.9
Mbps, better than the 2.6 Mbps throughput achieved by the
Greedy. In contrast to the inconsistent performance of both
EDF and Greedy, our scheduling policy does not lose to either
of them. Moreover, when the slow and fast varying periods
have comparable length, which corresponds to the middle
areas in Figures 3 and 4, our policy outperforms both EDF
and the Greedy. Specifically, when the slow and fast time-
varying periods have equal length, the proposed policy’s data
loss ratio is 17% lower than that of EDF and the Greedy.

Next, we evaluate how our policy reacts to network load
variation. The first half of Tc is set to be a slow time-varying
period while the rest is fast time-varying. In this scenario,
the total traffic arrival rate increases from 0 to 7.5 Mbps.
During the increase of the traffic rate within this range, the
system starts in an underloaded situation and then gradually
becomes overloaded. The throughput and data loss ratio are
shown in Figures 5 and 6 respectively. The two figures show
that the proposed scheduling policy is more robust to the
imposed traffic load compared with EDF and the Greedy
algorithm. It is worthy of mentioning that although the Greedy
guarantees a 1/2 performance bound, it drops a lot more data

than other algorithms. Our proposal policy drops packets only
when they are not schedulable. Moreover, it achieves better
aggregate throughput performance with a smaller amount of
packet dropping even in overloaded situations.

VIII. CONCLUSION

In this paper, we propose a scheduling policy to schedule
delay-sensitive data over time-varying wireless channels. The
advantages of our proposed scheduling policy are that: it is
insensitive to the time-granularity of channel variation; it is
optimal for underloaded situations, and its performance is
consistently better than other existing solutions for overloaded
scenarios. The proposed policy consists of different algorithms
whose performance is dependent on time-scale of the chan-
nel variation as well as workload. Among these algorithms,
OPT UNDERLOAD has been proposed as the optimal algo-
rithm for slow time-varying and underloaded scenarios. ED-
EDF algorithm is further proposed as the scheduling algorithm
for slow time-varying and lightly overloaded scenarios. ED-
EDF has a novel intelligent packet dropping mechanism which
reduces unnecessarily expired packets. When using dropped
throughput as the performance criterion, ED-EDF has a prov-
able competitive ratio, a missing feature for EDF and the
Greedy. By adaptively switching between different algorithms,
the overall performance of the proposed scheduling policy is
much more consistent than EDF and the Greedy algorithm.

REFERENCES

[1] E.L.Lawler, Combinatorial Optimization: Networks and Matroids,
Rinehart and Winston, New York, 1976.

[2] J.R.Jackson, “Scheduling a production line to minimize maximum
tardiness,” Research Report 43, 1955.

[3] T.Ling and N.Shroff, “Scheduling real-time traffic in atm networks,” in
IEEE INFOCOM, 1996.

[4] B.Hajek and P.Seri, “Lex-optimal on-line multi-
class scheduling with hard deadlines,” Preprint, 2000,
http://www.comm.csl.uiuc/hajek/.

[5] Q.Zheng and K.G.Shin, “On the ability of establishing real-time chan-
nels in point-to-point packet-switched networks,” IEEE Transactions on
Communications, vol. 42, no. 2/3/4, pp. 1096–1105, 1994.

[6] P.Bender, P.Black, M.Grod, R.Padovani, N.Sindhushayana, and
A.Viterbi, “CDMA/HDR: a bandwidth-efficient high-speed wireless
data service for nomadic users,” IEEE Communications Magazine, vol.
38, pp. 70–77, July 2000.

[7] ITU-T Recommendation G.114, “General characteristics of international
telephone connections and international telephone circuits: One way
transmission time,” Feb. 1996.

[8] M.Karam and F.Tobagi, “On the traffic and service classes in the
internet,” in IEEE Globecom, San Francisco, 2000.

[9] M.Agarwal and A.Puri, “Base station scheduling of requests with fixed
deadlines,” in IEEE INFOCOM, 2002.

[10] S.Shakkottai and R.Srikant, “Scheduling real-time traffic with deadlines
over a wireless channel,” ACM/Baltzer Wireless Networks Journals, vol.
8, no. 1, pp. 13–26, January 2002.

[11] M.R.Garey and D.S.Johnson, Computers and Intractability: A Guide
to The Theory of NP-completeness, W.H.Freeman and Company, New
York, 1979.

[12] X.Meng, T.Nandagopal, H.Y.Wong, H.Yang, and S.Lu, “Ex-
ploiting wireless channel variation for scheduling delay-constrained
data,” Technical Report, CS Department, UCLA, October 2006,
http://www.cs.ucla.edu/˜xqmeng/tr06.ps.

