
Event Contour: An Efficient and Robust Mechanism for
Tasks in Sensor Networks

Xiaoqiao Meng, Li Li, Thyaga Nandagopal, Songwu Lu
Technical Report TR-040018

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90095
{xqmeng, slu}@cs.ucla.edu, erranlli@dnrc.bell-labs.com, thyaga@lucent.com

ABSTRACT
In large-scale sensor networks, due to the energy and communi-
cation constraints of each sensor, it is infeasible to collect event
information from each individual sensor and process it at the sink.
In this paper, we propose an efficient data-collection scheme that
can be used for event monitoring and network-wide diagnosis. Our
scheme relies on the well-known representation of data – contour
maps, which trade off accuracy with the number of samples. To
build the contour maps, we propose three novel algorithms: a dis-
tributed spatial and temporal data suppression algorithm, a recon-
struction algorithm at the sink using interpolation and smoothing,
and an efficient algorithm to convey routing information for ex-
tending data suppression over multiple hops. The error in data
representation accuracy is bounded by a simple design parameter
of our choice. By reducing the number of transmissions required to
convey relevant information to the sink, the contour mapping strat-
egy conserves power at sensor nodes and improves network lifetime.
We also present novel and scalable security mechanisms to defend
against the injection of forged reports. Our security mechanism
uses location-based keys and is much more secure than existing
schemes using node-based keys.

Our scheme is suited for accomplishing many tasks in sensors net-
works: (1) It presents a global picture of the network in both tem-
poral and spatial domains. (2) It can be used as a diagnosis tool,
e.g., to detect faulty sensors and to scan for residual energy. (3) It
can work in concert with in-network aggregation schemes to fur-
ther reduce the communication overhead of aggregation schemes.
It requires only negligible processing and storage requirements in
sensors, thereby allowing for the sensor networking paradigm of
"dumb sensor, smart sink" which enables economical deployment
of large scale sensor networks.

Simulation results show that our scheme is resilient to high packet
loss rate in the network, and is robust to noise. The design is also
energy efficient, resulting in up to an-order-of-magnitude power
savings when compared with the base line scheme where every

sensor sends its report to the sink.

1. INTRODUCTION
Wireless sensor networks enable users to interact with the physical
environment at an unprecedented level. When an event occurs in
the field that a sensor network covers, e.g., temperature change, sen-
sors will automatically report their observations on the event back to
the data collection center (called sinks). Emerging applications in-
clude temperature and humility monitoring for fields of endangered
plants, forest fire alarming in national parks, seismic monitoring
and structure response, marine microorganism sampling, etc.

In this paper, we address the problem of monitoring and diagnosis
in sensor networks. We seek to effectively monitor events covered
by the sensor networks. In addition, we also examine the network
health (e.g., the current energy level of sensors) and fault diagnosis
(e.g., the damaged areas when part of the network is bombed by
enemies), in order for the sensors to operate properly.

There are four main challenges for monitoring and diagnosis in sen-
sor networks. First, an event may trigger widely varying readings at
sensors spread over a large sensor field. In some cases, it is desirable
to have a global view of the entire sensor field regarding that single
event, and to monitor the change on a temporal basis. For example,
when fire bursts out in a building, it might be necessary to contin-
uously monitor all the sensors to observe the spread of the fire and
track its intensity. Second, certain events are time critical and we
do not need readings from every sensor to respond to the event. It
is more important for the sink to collect coarse-grained information
on a timely fashion than fine-grained information with significant
latency. For example, it is critical to know approximately how the
fire is spreading and react quickly. Third, sensor readings tend to be
noisy and some sensors even provide faulty readings. The solution
to monitoring tasks must be robust against faulty or noisy sensors.
Last, certain deployment environment can be hostile. Moreover,
sensors may be subject to physical tampering. The solution must
be robust to a small number of malicious sensors.

Previous solutions address only some of these factors. For example,
Przyateck, Song and Perrig proposes secure aggregation solutions
that compute simple functions on sensor readings, such as min.,
max, median. Their solution minimizes the amount of communi-
cation and is secure from tampering of a small number of sensors.
However, the computed values are not applicable to many important
sensing tasks, e.g. the fire event discussed earlier. The aggregation

1

is also vulnerable to the presence of noisy or faulty sensors.1

In order to develop a single solution that considers all the above
factors and still perform tasks effectively, we introduce the no-
tion of event contours. In principle, a contour is a line in a map
that connects points of equal value. Neighboring lines have dif-
ferent values, and these values are separated by a pre-determined
threshold. Contours can represent various events, such as altitude,
temperature, concentrations, velocity, etc. In addition, a single map
can represent various contours, where we can have altitude contours
overlapping with concentration contours. In this paper, we demon-
strate that having an event contour of a sensor field can be extremely
useful for monitoring and diagnosis tasks in sensor networks, while
conveying event information in a reasonably accurate manner.

Our contributions are three fold: (1) we propose two novel algo-
rithms: a distributed spatial and temporal data suppression algo-
rithm, and a reconstruction algorithm at the sink using interpolation
and smoothing. (2) We give a novel and efficient algorithm for
conveying routing information that enables multihop local suppres-
sion. The algorithm is based on the use of Bloom filters and the
knowledge of sensor locations at the sink to disambiguate potential
routing paths (paths other than the actual is caused by the ag-
gressive data reduction of Bloom filter). (3) We also present novel
security mechanisms to defend against malicious attacks. Our secu-
rity mechanism is based on location-based keys and is lightweight.
Compared with previous solutions that only handle a fixed number
of compromised nodes, our solution can potentially handle much
larger number of subverted sensors.

The rest of the paper is organized as follows. We briefly describes
the network model and assumptions in Section 2. We give an
overview of our scheme in Section 3. We present the basic scheme
in Section 4. We discuss important extensions in Section 5 and
security in 6. We give the application scenarios in Section 7. We
evaluate our scheme in Section 8. We conclude in Section 10.

2. NETWORK MODEL
We briefly describe the sensor network model and assumptions
pertaining to our work.

We consider a network of fixed sensor nodes that are deployed in
a 2 or 3 dimensional space. We define the space monitored by this
sensor network as the sensor field. This sensor field is monitored
by a set of monitor nodes, also known as sinks, which may lie either
within or outside the sensor field2.

Each sensor node has four components: a sensory transducer(s),
a radio transceiver, a power unit and a processing unit. Certain
nodes in the network may possess only the latter three components:
these are relay nodes meant to process and pass information from
other sensors to the monitors. We assume that a heterogeneity of
transducers can exist in the sensor network, and that most sensors
have limited computational power and storage space. We do not
make any assumptions on the node density of the network, except
that events are sensed by more than one sensor.

We assume that knowledge of sensor node locations is available at
1We discuss more relate work in Section 9.
2Sink nodes that lie within a sensor field can be thought of
as intermediate data collectors for a given region that can
do some processing on the data before passing it to monitors
outside the sensor field.

the sink. The location information need not be precise. It could
be computed even after deployment, using techniques such as [10].
We also assume that the sink knows the topology of the sensor
network, such as obstructions and physical geography of the sensor
field. We do not assume any specific routing or medium access
protocol in this network. Our contour mapping algorithm requires
only the existence of a routing algorithm which guarantees that
packets generated by the sensors have at least one route to reach
the sink3. We do not require links to be bi-directional, however, we
assume that the sink nodes are aware of any uni-directional links in
the sensor field.

3. OVERVIEW
Our goal is to enable efficient event monitoring and diagnosis in
sensor networks. For many such tasks, it is sufficient if only a subset
of sensors respond. For example, in order to monitor residual energy
of sensors, it is not necessary for all sensors to report their remaining
energy level. However, it is not enough to report aggregated values
such as average, min, max or sum. The sink needs to have an
approximate view of the spatial distribution of the energy dissipation
over time, i.e. the spatial and temporal energy consumption trend
in the network.

Revisiting the fire monitoring application mentioned in Section 1,
computing aggregates over regions could potentially give a rough
idea of the distribution over multiple regions. However, defining re-
gions appropriately is very critical and it depends on the application
and the geography of the sensor field and has been acknowledged
to be a difficult problem [6], due to the computation costs. It is not
clear if defining regions and computing aggregates can still provide
the desired granularity and flexibility in monitoring events in the
sensor field.

In order to reduce resource consumption as much as possible and
meet applications’ need for an approximate view of the entire net-
work with a desired granularity, we seek an efficient data repre-
sentation that allows us to tradeoff accuracy and communication
cost. More importantly, we would like to achieve this with minimal
computation and collaboration requirements from sensors in the
network. This allows us to avoid the overhead of coordination (e.g.
synchronization, clustering) and achieve tasks with “dumb” sen-
sors. Dumb sensors can be mass-produced cheaply which enables
economical deployment of large-scale sensor networks.

We first elaborate the concept of contours that we propose to use
for data representation. We then give an overview of the contour
construction algorithm.

3.1 Data Representation using Contour Maps
Contour maps are a well-known technique for representing data
when there exists a tradeoff between the desire to have more in-
formation and the cost of collecting the additional information.
Contours, in essence, are lines that connect data points of equal
value. Non-intersecting lines have different values. Contour maps
have a step-value which separates two adjacent lines. For exam-
ple, given a step-value of 10, two adjacent lines on a topographical
contour map indicate points that differ by 10 units in height, while
an isotherm contour map indicate regions that differ by 10 units in
temperature. More contour lines indicate fine-grained data, which
comes at the cost of collecting more information. Contour maps

3This route must comprise of un-compromised nodes. See
Section 6.

2

present a simple way of fine-tuning the tradeoff between informa-
tion and the cost of obtaining it by adjusting the step-values to
suit situational requirements. There can be many contour maps,
each corresponding to a different parameter for e.g., temperature,
pressure, wind speed, with different step-values for each parameter,
thereby giving a clearer picture of events in the sensor network. The
step value for each contour can also vary depending on the appli-
cation requirement, e.g. an application may want more resolutions
for temperature above a certain value.

3.2 Contour Map Construction and Its Appli-
cations

The concept of contour maps is simple and well-known. However,
it is very challenging to construct contour maps in a sensor network
setting. How do we decide which sensor’s value does not need
to be transmitted in-network? Can we do this without explicit
coordination among sensors? If without explicit coordination, can
the sink construct the contour with reasonable accuracy? We seek
to address these challenges.

We utilize the notion of step-values in contours, to define a desired
margin of error. A sensor need not transmit if its sensor reading
can be deduced with bounded error. This can be achieved through
spatial and temporal suppression techniques. The idea behind spa-
tial suppression is to exploit the correlation between neighboring
sensors when an event occurs. Based on overheard information
from neighbors, each sensor u determines if it should transmit its
reading or not. If the difference in magnitude between u and an-
other sensor whose reading is reported is less than a threshold, say
δ, u will suppress its report. The suppression can also be done
on a temporal scale. Sensors do not report their readings if there
are no significant changes in their observed values over a period of
time. When the sink receives reports, it can deduce the readings
of sensors whose reports are not received based on the spatial and
temporal correlation.

There are many subtleties in putting this seemingly simple suppres-
sion technique to work. Nodes can only overhear one hop neighbors
directly. If we have a large step value, how can we suppress read-
ings of sensors more than one hop away? How can we ensure that
sensors with similar values in different regions transmit, that is, how
can we make sure that iso-lines, that represent same values, do not
become fragments in the sink? How can we reliably remove faulty
sensors with outlier readings? With suppressed readings, how can
the sink reconstruct the contour maps?

To enable a sensor u to suppress based on a report from sensor v
within a given number of hops away, we stamp a packet containing
reports with hop information. To implicitly coordinate who should
report and who should not at what time, a sensor waits for a random
time that is a function of its reading. In order to enable outlier
detection, sensors observing a disparity in its local average will
transmit even if they normally do not. This will assist the sink to
detect outliers more accurately. In order to accurately reconstruct
the contour maps, the sink utilizes its knowledge of the terrain of
the sensor field and the location of the sensors for outlier detection
and interpolation. Having done the outlier detection and interpo-
lation, the sink applies a smoothing algorithm to reduce the errors
introduced in previous steps.

Our contour data representation allows for tradeoff between accu-
racy and communication cost of various granularity. It can have
numerous applications. We focus on event monitoring and network

health diagnosis applications. These applications include spatial-
temporal event monitoring, residual energy monitoring and faulty
sensor detection.

3.3 Security
A key problem in dense distributed sensor networks is to ensure
that messages delivered to the sink are trust-worthy in the presence
of malicious nodes. Malicious nodes can be legitimate sensors that
are compromised. Malicious nodes can inject false reports into
the system and can trick the sink into believing falsely that events
are happening. We use a highly scalable, novel, location based
key-binding algorithm, and propose an approach that allows sensor
nodes to sign event reports. Only event reports that are signed by
more than D sensors will be accepted by the sink (D is a configu-
ration parameter). Our location-based scheme is much more secure
against attacks using compromised nodes. Previous schemes [22,
27] allow attackers to forge event reports at any location as long as
they can compromise D sensors and use the keys of these sensors
to deploy malicious sensors at the given location. On the other
hand, our scheme only allow them to forge event reports that go
undetected at a given location.

4. ALGORITHMS FOR CONTOUR MAP CON-
STRUCTION

For ease of description, in this section, we only describe the basic
algorithm. We leave other optimizations to Section 5. In particu-
lar, we present the spatial suppression algorithm based on one-hop
neighbors’ reports, temporal suppression algorithm and the contour
reconstruction algorithm at the sink using information sent by a
subset of sensors in the network.

Let Mu
e (t) denote the observed magnitude of an event e at sensor u

at time t. We denote by N(v), the network neighborhood of sensor
v, the set of sensors that can transmit to v in a single hop. Let δ(·)
be the step-value function for the contour. δ(·) can vary depending
on the magnitude of an event. For ease of understanding, in this
section, let δ be a constant.

4.1 Local Suppression at Each Sensor
A report in a sensor can be triggered by the occurrence of an event,
expiry of a periodic timer, or by a query from the sink. In these
instances, there might be spatial or temporal correlation between
sensors’ values which can be used to suppress the reports at a
particular sensor.

4.1.1 Spatial Suppression
When a report generation is triggered at a sensor, it is possible that
neighbors also have the same kind of trigger, especially if the trigger
is from an event or a query. In order to avoid transient congestion in
such situations and redundant transmissions, it is critical to let those
sensors with more relevant information to transmit. Therefore, the
sensors backoff for a period of time proportional to the relevance of
their message.4 Here, we assume that the relevance of a message is
indicated by the magnitude of the event. Therefore, each sensor u
backs off for a period of time inversely proportional to 1/Mu

e .

If a sensor u that generates a report overhears some neighboring
sensors in N(v) transmit before it can, it computes the average of
all the overheard readings that originated at its neighbors, Mavg

e .
It compares Mavg

e and Mu
e . If the difference is less than δ, then

4This can be in addition to the MAC level back-offs.

3

u suppresses its report. The pseudo-code for this triggered report
generation is shown below in Figure 1.

On sensing an event e at sensor u with magnitude Mu
e

1. random wait(1/Mu
e)

2. if (heard sensor v ∈ N(u) reporting Mv
e)

3. compute average overheard magnitude Mavg
e

4. if (|Mavg
e −Mu

e |≤ δ)
5. then do not transmit and return
6. transmit when timer expires

Figure 1: Event processing at sensor u

It is important that we compute the average Mavg
e and suppress

based on it. We illustrate this subtlety using the following example.

A B C D A B C D

45526057 Observed value 57 60 56 30

60 45 60 30

60 60 53 45 60 60 45 30

Reported value

Assigned value

Figure 2: Spatial Suppression Example

In the left scenario depicted by Figure 2, node B observes a reading
of 60, while its neighbors, A and C, observe readings of 57 and 52
respectively. If B transmits (reports) its value first, then, assuming
δ = 10, both A and C will suppress their reports. D observes a
reading of 45, and even if it transmits, C’s reading is within δ = 10
of D’s reading, and hence C will remain quiet.5

An alternate situation occurs when C reports a reading of 56 and D
reports a reading of 30, as shown by the right scenario in Figure 2.
Such a situation can easily occur when there is a physical obstruction
that prevents the event registering at sensor D, or there are other
physical parameters influencing the readings. If B and D transmit,
then C is in a dilemma, because only one of its neighbors’ values
is correlated with its own reading. If the sink took a simple average
of C’s neighbors to compute C’s perceived value, then C will be
assigned a value of 45, which is more than δ = 10 away from the
actual reading at C. To reduce the interpolation error in the sink
or to better detect outlier readings, when C overhears B and D, it
computes the average of these two readings, and if the average is
within δ of its actual reading, it suppresses its event report.

For sensors that are on the routing path, the spatial suppression
process works in the same way as for non-relay nodes, but with one
distinction. Since relay nodes have to transmit to convey messages
from other nodes, they can potentially piggyback their own sensor
readings. The advantage is that more information is sent to the sink
without media access overhead. The disadvantage occurs when the
report size generated at each sensor is large, resulting in significant
packet transmission times when more and more reports are added
to a packet. One way to limit this negative impact is to limit the
number of reports to the maximum that carried in a single physical
packet. The size of the cumulative packet should not exceed the
maximum physical packet size allowed by the link layer.

5It is entirely possible that the route of B’s report will be
through C and D, forcing C to transmit and rendering C’s
suppression useless. However, the number of such nodes is
usually O(

√
n), and therefore suppression will benefit other

nodes not in the routing tree.

One of the salient features of the spatial suppression scheme is that
it does not depend on how packets are routed in the network. In
other words, it is independent of the routing protocol. We do not
rely on any explicit or implicit constructions of the routing tree as
in [12]. Routing path information can be conveyed to the sink, if
needed, using path digests as discussed in Section 5.

4.1.2 Temporal Suppression
We define two parameters for each sensor: a minimum reporting
interval τmin, and a maximum reporting interval τmax. Successive
reports from a sensor must be spaced at least τmin seconds apart,
while each sensor must report at least once every τmax seconds.
The value of τmin is dependent on the type of monitoring applica-
tion, and is chosen to capture all event occurrences in the network.
Typically, τmax = k.τmin , where k is a large number. If a report is
not received from a sensor for J ∗ τmax seconds where J is small
number, e.g. 3, then the sink will assume that the sensor is dead.

Define epochs as time periods of length τmin. For a given sensor v,
Let Mv

e (t) and Mv
e (t−1) be the samples in epoch number t and t−1

respectively. We exponentially average the readings with a low pass
filter with filter constant, x. i.e. M = x.M(t)+(1−x).M(t−1).
Note that we can also use the last m samples, as opposed to using
the last sample alone, for the averaging process. The sensor reports
M(t) to the sink if either | M −M(t) |> δ or time elapsed since
last report is greater than τmax − τmin.

The temporal suppression phase introduces a potential conflict with
the spatial suppression phase, where one phase wants to suppress
a event report while the other phase wants to transmit the report.
We resolve this by suppressing a sensor report only when both the
spatial and temporal phases request to suppress. Spatial suppression
is based on sensor readings most recently heard from neighbors.

4.2 Interpolation and Smoothing at the Sink
When the sink receives a subset of sensors’ readings, it will first per-
form interpolation and assign readings to sensors without a direct
report. It then performs a smoothing procedure.6 This procedure
is necessary because the readings after the interpolation can vary
over a large range, depending on δ. The actual readings are, in gen-
eral, much more smooth, spatially and temporally. This procedure
can reduce errors significantly. The interpolation step can not be
avoided since it assigns a value to a sensor that is within a certain
range imposed by the suppression criteria. Without this step, the
smoothing procedure can assign a value that is well outside of the
range. We describe these two algorithms in detail below.

4.2.1 Interpolation Algorithm
We assume the data sink knows the location of each sensor. This
can be done through the localization process, e.g. [10]. We do not
assume prior knowledge of the routing tree, since it is not necessary
for the contour construction algorithm for interpolation based on
one-hop neighbors’ readings. We do assume the topology of the
sensor network is known. We refer those sensors for which readings
are reported as black nodes, and sensors for which sensor readings
are unknown as white nodes. We define the level of interpolation,
I = x, if the interpolation process assigns values to white nodes
that are at a minimum distance of x hops from a black node. The
maximum level of interpolation required for given event is defined

6Smoothing is done over sensors that are in the same phys-
ical region. This can be done easily at the sink, since it
knows the geography of the region.

4

as Imax. From the definition, it can be seen easily that if Imax = 0,
then there is no aggregation in the network, i.e., all sensors have
reported their readings. If we assume that no reports are lost in
transit, then Imax ≤ 1.

Reports can get lost due to congestion and link errors along the path
from sensor to the sink. Lost reports can result in holes in cover-
age, leading to a value of Imax > 1. To minimize interpolation
errors due to losses, we need to constrain the maximum level of
interpolation, Ip.

The event contour can now be constructed using the pseudo-code
in Figure 3.

After receiving event reports at the sink,
1. Assign signal strengths Mu

e for black nodes
2. For each white node v, let status(v)=false
3. I = 1
4. while I < Ip

5. color(v) = black ∀v : status(v) 6= false
6. for each white node v within I hops from a black node
7. let Mv

e be the average values of neighboring black nodes
8. status(v) = true
9. I ← I + 1

Figure 3: Contour reconstruction: interpolation at

sink
If Ip = 0, the only information we have is the received reports
from the black nodes. If Ip = 1, then we have interpolated data
from most of the white nodes, i.e., those that have suppressed their
reports. The exception is when two neighboring nodes have sent
reports and one of the two reports is lost. In this case, we will have
incorrect interpolation, but bounded by the difference of the node’s
reading from the average of the neighbors’ readings. If Ip = 2,
nodes whose readings are interpolated at this stage are either (a)
nodes whose reports are lost or (b) nodes whose neighbor’s reports
have been lost and interpolated in the previous stage (Ip = 1), (c)
nodes that have not sensed an event at all. The case Ip ≥ 3 will be
reached only when the loss rates are pretty high, or they have not
sensed the event at all.

In order to reduce errors in the spatial interpolation process, we set
Ip = 2. This limits our exposure to packet losses and can help the
sink in figuring out the regions that experience losses due to errors
and/or congestion. In addition to spatial interpolation, the sink uses
the previous values from a given white node to assign sensor values,
using temporal interpolation. For each given white node v, the sink
computes the spatial interpolated value, and uses the previous value
assigned to v, and compares the difference of these two values to
the current event reports received in the neighborhood. The sink
uses that value which has the smaller variance when compared to
the reports from neighboring black nodes, as the chosen value for
that particular sensor v.

4.2.2 Smoothing the Constructed Contour
In the previous interpolation algorithm, any sensor that does not
have its actual reading received by the sink is assigned a reading
value from the average of its nearest neighboring sensors. This
local decision may cause the contour to be sharply discontinuous
at certain sensors, which does not fit the reality in most cases. To
address this issue, we use a circular Gaussian kernel to convolve
the interpolated reading values. This way, a sensor with unknown
reading value is assigned a distance-weighted sum of its nearby

reading values. By using such a smoothing, an unknown reading
of a sensor v is dependent on the readings of sensors that are more
than one hop away from v. Hence, the reliability of the interpola-
tion is improved. Note that we can not perform smoothing without
interpolation. The interpolation process recovers important infor-
mation about the range of sensor values. Without interpolation, our
smoothing technique can assign values that are outside the range
that are imposed by the suppression algorithm.

To be more precise, the circular Gaussian kernel function is ex-

pressed as G(r) = ne
−

r2

2σ2 , where r is the distance, n is the
normalization factor, and σ controls the range of convolution. Sup-
pose the reading value Mv of sensor v needs to be smoothed and Lr

is the set of nodes r-hop away from node v. Then after smoothing,

Mv =

3∑

r=1

∑

u∈Lr

Mune
−

r2

2σ2

The above distance-weighted sum only involves those sensors within
3-hop away from sensor v. This is because we have set Ip = 2 in the
previous interpolation procedure. Therefore, a sensor node without
an actual known reading value should have at least 2 neighbors
within 3 hops.

5. EXTENSIONS
We discuss several important extensions in this section. We show
how we enable multihop local suppression, how data aggregation
is done with local suppression, how to suppress using information
gain instead of step value.

5.1 Multihop Local Suppression
We have proposed local suppression algorithms that are based on
the overhearing of neighbors. To enable more aggressive tradeoff
between accuracy and communication cost. We propose techniques
that enable suppression that are based on overhearing of sensors that
are multiple hops away. Given an upper bound h on the number of
hops, if a sensor u overhears a report that are within h hops of itself
(together with the report, a field indicating the number of hops of the
report has traveled), and the report has a value that are within δ of
u, u will suppress its transmission. In order for the sink to correctly
interpolate the values of sensors whose report are not received, we
utilize the routing information. In the following, we first describe an
efficient mechanism that keeps the sink up-to-date about the routing
information, we then briefly describe the interpolation algorithm at
the sink.

5.1.1 Routing Information
To get more accurate and detailed contour information, we need to
know the route from the data source to the data sink. If routing tree
does not change, then we can attach this information in the packet
once. However, routing paths (or tree) is maintained distributedly
and can change as nodes die or go to sleep mode. Therefore, we
need an efficient mechanism for the data sink to figure out the
route. We propose a Bloom Filter technique. The technique works
as follows.

The data source creates a Bloom Filter (a small bit array) [3] in the
packet. Each node (including the data source) hashes their node ID
into the bit array. We can select the number of hash functions to
reduce false positive probability. A Bloom filter does not have false
negatives. When the data sink receives the packet, it can apply the

5

same hash functions to each node ID u (we assume the sink knows
the set of node IDs). If all the bits in the indices of the hash value
in the bit array (carried in the packet) are one, then the sink will
declare that the node u is very likely to be on the route. Once the
sink determines the potential candidate nodes set S, it will try to
piece together the routes from the sink back to the source (reverse
route) using the location of each candidate node (we assume the
location of each sensor is fixed and the sink knows the locations
of each sensor). If a node is far away, the sink will know that the
node is a false positive. Therefore our mechanism is light weight
and we can deal with false positives very well based on the location
information. For example, if path length can be 20 hops, we have
a 4-byte Bloom filter array and one hash function, then the false
positive probability for one hop is f = (1 − e−20/32) = 0.46.
This is very large. However, a false positive path of 5 hops has
a probability of f5 = 0.02. The probability for a false positive
path of 10 hops drop to 4.7 ∗ 10−4. Therefore, with only 4 bytes
in the packet, we can eliminate all false positive paths with high
probability.

5.1.2 Interpolation Algorithm at the Sink
When the sink receives the reports from the sensors, it iteratively
perform interpolation to obtain the values of the sensors that are
within i hops of at least one sensor that has reported value directly
where 1 < i ≤ h. For i = 1, the algorithm is what we have
described before in Section 4. All we need to know is that whether
they are direct neighbors of each other. For i > 1, we need to know
how many hops two sensors are in routing paths (or tree). If two
sensors are within i hops, then the one did not report is within δ of
the sensor who directly reported its value.

5.2 Interaction with Data Aggregation
Certain monitoring tasks require the computation of a function on
the sensor data, e.g. max, min, average of energy level of sensors
in a sensor network. Due to the simplicity of these functions, they
can be computed in network. In some sensor networks, there are
special nodes called aggregators that perform such function. In
other sensor networks, every sensor can be an aggregator.

Our framework can easily accommodate function like max, min
with the idempotent property (i.e. repeated apply the function to
the same input, the function value is the same). To compute the max
in network, if a sensor have a value lower than a value overheard, it
just suppresses its communication.

To accommodate non-idempotent functions like average and sum,
the aggregator needs to know the routing information. The routing
information can be obtained efficiently as we described in previous
subsection. An aggregator collects reports from sensors. It inter-
polates the values of sensors that are not received directly. The
algorithm is the same as we described previously. The aggrega-
tor computes the function value on the interpolated readings of all
sensors. If routing spans all sensors and each non-leaf node is an
aggregator, each non-leaf node needs to know its two-hop neighbor
information in order to correctly perform interpolation.

5.3 Step Value vs. Information Gain
We have used step value of observed signal to suppress sensors
from reporting too much information. Alternatively, we can use
information gain instead. The idea is as follows. Suppose we would
like to locate an event source. If a sensor’s observed value reduces
the uncertainty of the estimated event location by a threshold (or in

other words, the information gain is greater than a threshold), then
the sensor will incorporate its own reading into the estimation and
send out the new estimated location.

The major issue are (1) how to represent information (or believe
state, in general a probability distribution) since they need to be
transmitted to other sensors; (2) how can we update the estimation
incrementally with each sensor’s observation. Chu et al. [4] gave an
in-depth discussion on these issues. Nonparametric representation
requires the transmission of each individual sensor’s measurements
as they are incorporated in the estimation of the belief state. To use
nonparametric representation, sensors can estimate the information
gain when it overhears the set of sensors’ reading gets transmitted
along the routing tree (suppose it has transmitted the reading). If
the information gain exceeds a threshold, the sensor will send its
reading to the sensor who is receiving the set of readings (towards
the sink). Parametric representation can reduce redundant data
transmission significantly. However, it relies on each sensor knows
the parametric class of beliefs. In the case that the parametric
belief is represented by Gaussian distribution, only the mean and
covariance need to be transmitted. The Kalman filter equations
are recursive update equations of the mean and covariance of the
Gaussian distribution.

Multiple beliefs can reach the sink. The sink can merge these
beliefs to have a more accurate estimations of the event source. In
the case of ellipsoid representation of uncertainty, the intersection
of the ellipsoids can be used as the target location.

6. SECURITY
The goal for security design is to ensure that reports about the
physical world be generated faithfully, even in the presence of com-
promised nodes.

The threat model by compromised nodes is as follows. We as-
sume that sensors are not compromised before their deployment.
After being deployed, they are untethered and attackers can physi-
cally capture a node and compromise it to obtain all the information
stored in it, including secret keys. However we assume that the time
needed to physically capture and compromise a node is much longer
than it takes sensors to finish certain bootstrapping tasks, including
obtaining their locations and deriving security keys. Once a node
gets compromised, attackers can use it to launch various attacks to
the system. They can disrupt data forwarding by dropping, alter-
ing or replaying legitimate packets. They can also inject numerous
bogus reports. Large numbers of injected reports can exhaust the
energy and bandwidth of data forwarding nodes. Solutions to most
attacks are relatively easy. Replay or message modification attacks
can be addressed via standard security techniques. If a malicious
sensor drops reports selectively, a sensor can randomly choose a tra-
jectory [14] to the sink. The probability that not enough reports are
received will be low. Therefore, the sink still gets enough informa-
tion to reconstruct the contour with high probability. In this work,
we focus on addressing the attack of injected false reports since it
poses one of the most severe threats to event contour generation. If
the sink can be tricked into believing some fake events are happen-
ing. This can result in very dire consequences. For simplicity, we
only describe the mechanism that allows the sink to detect forged
reports by up to D compromised sensors. To enable early detection
of forged reports and drop them in-network. we need more compli-
cated security mechanisms which will bring more overhead during
normal operation. We omit them in this paper.

6

There are several goals for the security design. The solution must
enable the sink to reliably detect and reject bogus reports even in
the presence of large numbers of compromised nodes. It also has to
be efficient to work with the resource constraints of sensor nodes,
which preclude the use of asymmetric cryptography. Therefore,
the design can only use inexpensive techniques such as symmet-
ric key algorithms and hash functions. It should incur minimal
computation, energy and storage overhead. Ideally, the overhead
on individual nodes should be independent of the total number of
node. This way, the design scales to a large sensor population.

In this paper, we explore a novel, location-based security approach
that exploits the location-awareness of sensors to protect from the
bogus reports fabricated by compromised nodes. In a typical sen-
sor network, sensors use location information to tag all sensing
report. Our security solution leverages this distinct feature of sen-
sor networks to use location-based, rather than node-based, security
primitives to protect the system. Fundamentally, the role of an indi-
vidual sensor is minimized but the system functions are based on the
collective behavior of multiple sensors in a given region. Whereas
in conventional networks, messages are addressed to specific nodes,
and security design is node oriented rather than location based.

Our location-based security solution is based on two fundamental
premises. First, the security key owned by each node is a function
of its location; each node has keys binded to its own, but not any
other’s location. Second, sensors are densely deployed so that
each event occurring in the sensor field can be detected by multiple
nodes, which makes it feasible to require that each event report be
endorsed by credentials generated by multiple detecting nodes to
minimize the possibility of bogus reports. An event without enough
credentials will be rejected. Thus attackers cannot produce false
reports about a specific location without compromising a sufficient
number of nodes at that location.

The detailed design seeks to address several issues: (1) How does
one generate location-dependent keys? The location alone cannot
be used as keys, because attackers can easily forge such keys for
any location. (2) How does one establish such keys in each node in
an efficient and scalable way, given that the network may contain
hundreds or even thousand of nodes? The ad hoc deployment
precludes the possibility of knowing exact location of each node
before deployment, while collecting all the nodes’ locations to the
sink after the deployment, then computing and sending keys to them
does not scale to large networks. (3) How does one send credentials
to the sink in an efficient and secure way? A naive way is to let
each detecting node generate one credential and send one report
separately. However, delivering such redundant reports from all
detecting nodes would drain system energy excessively.

Generating Location-based keys We divide network
field into virtual geographic square cells and bind the keys of each
sensor to the cell it belongs to. The keys generated this way are
called cell keys. We also assume that a system-wide master secret
KI . KI is loaded into nodes before deployment and erased after
bootstrapping; it is also known by the sink. Given the location of
a geographic cell, expressed by coordinates Li,j = {Xi, Yj |Xi =
X0 + ic, Yj = Y0 + jc; i, j = 0, 1, 2, ...}, each node in the cell
derives security keys as follows:

KXi,Yj ,s = HKI
(Xi||Yj ||s),

where H(·) is a secure one-way function keyed with KI , || denotes
concatenation, and s is a random number.

Credential announcement After agreeing on the report
content, nodes should generate and announce their credentials to
others, so that each can aggregate credentials independently. Each
node uses its cell key of the cell (Xi, Yj) to generate a MAC.
Assuming it has KXi,Yj ,s,

MACs = HKXi,Yj ,s
(E||L||t).

where E is the event report, L is the location of the sensor and t
is the time that the event is observed. The sensor should broadcast
this MAC to all its neighbors. To avoid collisions, each node sets
another random timer, upon the expiration of which it broadcasts a
MAC announcement message:

{E, L, t, s, MACs}.
Others overhearing the message should record the tuple{s, MACs}.
Since these MACs are used to prove that the event is real, we call
them proof MACs. The event part {E, L, t} is needed because more
than one event might have been announced. Each node should clar-
ify what report content it is endorsing.

Signing reports In this phase, nodes prepare and send the
final report. Each node sets a random timer, upon the expiration
of which it sends out the report with some MACs it gathers. The
first node to fire the timer randomly picks D of the proof MACs it
gathered and prepares a report message

{E, L, t, MACs1
, MACs2

, ..., MACsD
, s1, s2, ..., sD},

where D is a design parameter, the number of credentials needed to
make an event accepted by the user. It presents a tradeoff between
overhead and security strength and should be set based on the de-
ployment density. If a node hears a report message originating from
a given number of hops away and its own event magnitude is within
δ, then it will suppress its report.

Each overhearing node checks the D MACs against its list of gath-
ered MACs. It keeps a counter for the number of MACs that are in
its list and sent by others. Each time a report is sent, an overhearing
node updates this counter. If this number reaches D, it cancels the
timer. Because by then D MACs are sent and the event will be
accepted by the user, there is no need to send redundant messages.
Otherwise, its timer continues. Upon the timer’s expiration, it pre-
pares the report by picking D MACs from its list except those sent
by others. Thus a legitimate node sends more MACs unless at least
D MACs are sent.

Report verification at the sink When the sink receives
the report, it can generate the cell keys used from L and {s1, ..., sD}.
It then recomputes the MACs, compares the attached with them
and counts how many are correct. The user makes the decision
of whether to accept the event based on the number of correct
MACs. Different approaches can be applied. One simple way is to
set a threshold D. If this number reaches D, the event is accepted;
otherwise it is rejected. Other ways such as setting confidence levels
as functions of the number of correct MACs are also possible, but
we do not elaborate on this.

For lasting events, the sink can accumulate the number of distinct
correct MACs from continuous reports. The event is still accepted
if the accumulated number satisfies the criteria.

7. APPLICATION SCENARIOS
In this section, we describe three key applications of our contour
mapping algorithm.

7

7.1 Spatio-Temporal Event Monitoring
The set of events monitored by a sensor network belongs to diverse
categories. Events can be stationary or mobile events. In this
paper, we primarily consider stationary diffusion events, where the
event source does not move and the magnitude of the observed
event decreases with distance from the event source. However, our
proposed contour construction algorithms are easily applicable to
other types of events. Various physical processes, which sensors
are designed to monitor, are typically modeled as diffusion events
with varying dispersion functions. The frequency of these events
can vary widely and multiple events may occur at the same time.

Physical events with diffusion spread processes are principal events
targeted for monitoring using sensor networks. For example, tem-
perature, air quality, chemical sensors follow a diffusion spread
process, i.e., the samples are highly correlated over any small re-
gion. In addition, such events are very much likely to vary over
time.

7.2 Residual Energy Monitoring
Diagnosis of the health of a sensor network is a critical opera-
tional requirement. An important parameter of sensor health is
the residual energy level of each sensor since sensors are severely
energy-constrained. Keeping tabs on residual energy allows dy-
namic reconfiguration of the network for optimal performance.

Zhao et al. [25] discusses a polygon-based mapping approach to ag-
gregate data for gathering residual energy information on sensors.
However, all sensors are required to transmit their residual energy
information, including all nodes that have low energy levels. In
addition, each sensor needs to compute the merging of polygons
which requires more computational power. There are several ben-
efits when our contour mapping approach is applied to monitor
residual energy levels of sensors. Consider two scenarios: (a) one
node has very low energy level in a neighborhood, and (b) an entire
neighborhood has low residual energy. In case of (a), it is impor-
tant to identify which other nodes have better energy levels. When
the low energy node sends out its energy report, local suppression
will immediately trigger nearby nodes with higher energy levels to
transmit their energy reports, giving the sink alternate information
right away. In case of (b), it is not necessary for all nodes to send
their low-energy level reports as it is a waste of energy. Local
suppression will ensure that only a small subset of nodes send their
energy reports and be able to convey the requisite information at
the same time.7

Instead of using a single step value function for the contour mapping,
we use a magnitude dependent step function δ(Ev), where Ev is
the residual energy level at sensor v. We assume that each sensor
starts out with maximum energy Emax, and is considered dead
if the residual energy falls below Emin. Now, we use a binary
exponential step function to define different thresholds, i.e.,

δ(Ev) =
Emax

2m+1
, where Emin ≤

Emax

2m+1
≤ Ev <

Emax

2m
(1)

for the smallest positive integer m. The reasoning behind this is
that nodes with high energy levels do not need to report their status
frequently.

The energy report can be queried periodically by the sink from all
7Instead of one node and all nodes in a neighborhood, the
discussion is valid when replaced with a small subset and a
large subset of nodes in a neighborhood, respectively.

the sensors in the network or it can be triggered when energy levels
fall below certain thresholds such as two or three step-levels above
Emin. The relevance of a residual energy report is more for nodes
with low energy levels. In other words, while reporting residual
energy, nodes with high energy backoff more than nodes with low
energy.

7.3 Faulty Sensor Detection
Another aspect of sensor health monitoring is to determine the
existence of sensors reporting faulty readings. The faults are due
to problems with the sensors. Faulty sensors are defined as those
sensor nodes which report data that is inconsistent with the observed
event value at the sensor. Note that faulty sensors can be detected
only when the value they send out is different from the observed
value of the event.8 We detect faulty sensors in two steps.

We first apply our contour mapping algorithm to the sensor field, as
in the regular scenario. Since each sensor computes the average of
all reports originating at the neighbors (the black nodes) and then
decides to suppress based on that value, it follows that any sensors
that report faulty readings that are significantly different from neigh-
boring sensors will have its neighbors also transmit their reports.
Thus, any potential faulty sensor(s) reports will be accompanied by
more neighbor reports than usual, which helps us to pinpoint any
clusters with faulty sensors.

The second step uses well-known outlier detection algorithms,
which help to pinpoint potential data which stand out from the rest
of th data set. Various outlier detection algorithms exist, with the
difference between the various algorithms being primarily in the
implementation complexity. We use the outlier detection algorithm
in [16] to detect the outliers in the contour data, and label them as
faulty sensors.

8. PERFORMANCE EVALUATION
In our experiments, we use extensive scenarios to evaluate multiple
aspects of the proposed contour mapping algorithms. These include
the basic spatial and temporal suppression at individual nodes, the
contour construction algorithm at the sink, and combining the basic
design with outlier detection algorithms to identify faulty sensors,
if any. The scenarios involve events that vary over both space and
time. We also evaluate one important application of the proposed
design, that is, monitoring residual energy in sensor networks.

8.1 Experimental settings
Our simulation platform is ns-2 [15]. The basic physical layer
parameters used in all our experiments are configured based on the
TR3100 transceiver [17], manufactured by RF Monolithics [19].9

This transceiver has two operating modes, a high power mode and
a low power mode. In the high power mode, the data rate is 576
kbps. Transmission and reception power requirements are 30mW
and 21mW respectively. The high-power mode is used for data
messages.

In the low-power mode, which we use for exchanging control mes-
sages, the data rate is 19.2 kbps. The power consumption in the
low-power mode is 10% of the high-power mode operation. We also
adopt the energy management scheme in [5]. In such a scheme, a
node turns off its data-channel when it has no traffic, yet its control
8Malicious sensors are discussed in Section 6.
9The predecessor of TR3100 is TR1000, which is used by
the UC Berkeley Motes [2].

8

0 200 400 600 800 1000
0

200

400

600

800

1000

X (meter)

Y
(m

et
er

)

Figure 4: A 2D representation of actual event contour

(Each dot represents a sensor node. × are the sources

of diffusion model . The © at the left-bottom corner

is the sink. The value of gray color is scaled according

to reading value, i.e., a deeper gray color represents a

larger reading value.)

0

500

1000

1500

0

500

1000

1500
100

120

140

160

180

200

X (meter)Y (meter)

R
ea

di
ng

 v
al

ue

Figure 5: A 3D representation of actual event contour

radio is left on so the node can know when other nodes need it to
forward traffic.10 The transmission range for each sensor is 100
meters.

The MAC protocol used here is CSMA/CA, similar to IEEE 802.11.
Control message exchange is performed via the control channel
while the data packets are transmitted by the data channel. Since
our design does not rely on the underlying routing protocol used,
we assume that sensor nodes know the location of their sink and
use a simple geographical routing protocol similar to LAR [21].
While this simple protocol does not produce the best delivery ratios
possible, we use it as a baseline case. Using better routing protocols
can only guarantee better performance with our algorithm.

We use diffusion models to represent the spatial and temporal spread
of physical events [1] as perceived by sensor nodes. Diffusion
models can be used to simulate the behavior of many physical
processes, e.g., temperature diffusion from fire sources. In our

10We can additionally use a MAC protocol that periodically
wakes up to check for events, reports or neighboring trans-
missions [23], in order to garner extra savings in power, how-
ever, it is beyond the scope of this paper.

study, a point p in the space has a value which is the summation
of diffusion from multiple point sources, which is expressed by the
following formula:

V (p, t) =

Ns∑

i=1

[k ∗ dist(i) + 1]−a ∗M(i, t)

where V (p, t) is the value at point p at time t. Ns is the num-
ber of event sources. M(i, t) is the value for source i at time
t. dist(i) is the distance between the point p and source i. a, k
are distance factors. They are chosen to be 3 and 0.05 respec-
tively. We simulate three point sources with their locations as
(250, 250),(500, 1000),(850, 250) (the unit is in meters). The val-
ues M(i, t) of these sources are 145, 182, 160 units respectively.

In our study, we simulate a 23 × 23 grid topology. The distance
between neighboring sensors is 50 meters. We assume there is only
one sink. It is located at the left-bottom point of the topology.
Given such a topology, the diffusion model and the sources, we
can generate reading values for each sensor node. We focus on
the grid topology in this paper in order to bring out all the aspects
of the contour mapping scheme. We have tested our scheme with
random topologies, and the results presented here are representative
of results with random topologies.

Unless explicitly mentioned, we assume M(i, t) is time-invariant
and hence the actual reading values for each sensor node is constant
over time. In such a time-invariant scenario, we assume each sensor
is only triggered by the sensing task once. We describe an example
using spatial-temporal events later in the section. The suppression
algorithm used in the examples in this section is the single-hop
suppression algorithm described in Section 4. We consider the
performance of the multi-hop suppression algorithm as part of future
work.

For the given set of event sources, we compute the values observed
by the sensors. The observed event magnitudes range between 102.7
and 182.3. We plot the sensor grid with the associated observed
values in Figure 4. The figure shows the location of nodes, sink,
and also the event sources. It uses grayscale depth to represent the
reading value at each node. An alternative representation method
for such a contour is 3D plotting. As shown in Figure 5, the reading
values at sensor nodes are plotted by 3D meshes. In this paper, we
mainly use the 3D plotting to depict event contours.

8.2 Performance of basic contour construc-
tion algorithm

Our first experiment demonstrates the accuracy versus power con-
sumption tradeoff using our algorithm. We show that the contour
mapping process is robust even when subject to heavy loss rates in
the network.

We evaluate the accuracy of the contour maps constructed by the
basic algorithms, assuming that no sensor reports are lost in the
network. The spatial suppression algorithm is enabled and δ is set
to be 20. The simulation result reveals that 92 nodes out of the 528
sensor nodes actually sent out their reading values. The location
of these nodes are shown in Figure 6. The sink constructs the
contour for the event based on these received readings. We plot the
contour in Figure 7. We also plot the difference of the interpolated
readings from the actual values in Figure 8. The figure shows that
the maximum deviation in values as a result of the contour mapping
process is 10, which is less than 7% of the average observed value.

9

0 200 400 600 800 1000
0

200

400

600

800

1000

X (meter)

Y
(m

et
er

)

Figure 6: Nodes that actually sent out their reading

values)

Note that the maximum error is the same as δ, the step-value for the
contour.

The key observation is that the maximum deviation is related to the
step-value chosen for the contour mapping process. This allows us
to tradeoff the relative accuracy for the number of reporting nodes.
In addition, the number of nodes that report is nearly an order of
magnitude smaller than the total number of sensors, inspite of not
using a clustering protocol. Using a clustering protocol will result
in further reductions in the number of nodes that send out reports,
without compromising the accuracy.

8.2.1 Fidelity of contour maps
In practice, reports can be lost on the way from the sensor to the
sink due to either channel errors or congestion losses. In the above
scenario, we introduce losses in the network by introducing conges-
tion, which can be caused by heavy contention or repeated attempts
to correct channel error. The average loss rate of reports is 20%.
Out of the 92 reports sent by the sensors, 17 readings are dropped
before they are received by the sink.

Based on these reports, the sink computes the contour. We plot the
difference of the reconstructed contour from the original observed
values in Figure 9. The figure shows that the maximum reading
error brought by our protocols is 20, which is less than 15% of the
average observed value at the sensors. We also compute the relative
error for the recovered values at the sink and find that 98% sensor
nodes have a relative error ratio less than 5%. The degradation in
performance is marginal at best even at such high loss rates in the
sensor network. This illustrates the robustness of our design.

8.2.2 Energy saving
We now evaluate the energy consumption of the proposed algorithm
by comparing it to the scenario where there are no such mapping
and all nodes transmit their reports. We classify energy consump-
tion into three categories, energy needed to transmit readings,
energy needed to overhear neighbors’ transmissions, and en-
ergy needed to receive transmissions meant for the sensor.
We compute the average energy consumed over all sensors and re-
port the results in Table 1. Energy needed to overhear neighbors
forms the significant component of the overall energy consumed,
as expected in wireless sensor networks. In each component, the

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

X (meter)

Y
(m

et
er

)

11
0

110

110

110

13
0

13
0

13
0130

130

130

13
0

130

13
0

130

130

130

130

15
0

15
0

150

150

150

15
0

15
0

150

150

170

17
0

170

170

170

170

Figure 7: Two dimensional contour of sensor field

0

500

1000

1500

0

500

1000

1500
0

5

10

15

X (meter)Y (meter)

Er
ro

r o
f r

ea
di

ng
 v

al
ue

s

Figure 8: Error of recovered contour assuming no re-

ports are lost

0

500

1000

1500

0

500

1000

1500
0

5

10

15

X (meter)Y (meter)

Er
ro

r o
f r

ea
di

ng
 v

al
ue

s

Figure 9: Error of recovered contour assuming 20% re-

port loss

10

Energy needed to (in Joules)
transmit overhear receive

No mapping 0.0018 0.0774 0.0011
Contour maps 2.1240e-004 0.0089 1.2716e-004
Energy saving 88.2% 88.5% 88.4%

Table 1: Energy savings using contour mapping - av-

eraged over all sensor nodes

σ 1 3 5 8 11
Accuracy (in %) 97 95 89 80 65

Table 2: Accuracy of contour in the presence of Gaus-

sian noise

power savings using the contour mapping scheme is upto an order
of magnitude.

8.2.3 Sensitivity to Noise
In this example, we evaluate the sensitivity of the contour mapping
algorithm to noise. We add Gaussian noise with zero mean and
standard deviation, σ, to the sensor measurements in the entire
network. We vary the noise variance and measure the accuracy of
the mapping, defined as the percentage of nodes having relative
error ≤ 5%, and tabulate the results in Table 2. The noise standard
deviation, σ, is varied up to the δ/2. It can be seen that the accuracy
is pretty reasonably good for small values of σ relative to δ. When
σ becomes comparable to δ the neighboring values vary more than
delta, even though such noise levels are highly unlikely. This results
in lot of transmissions, causing congestion in turn resulting in high
levels of losses. Therefore the accuracy goes down.

However, if we define the accuracy threshold to be percentage of
nodes having relative error ≤ 10%, then the accuracy is near 100%
for the similar values of σ. This implies that the values assigned by
the sink have an error of mostly between 5% and 10% compared
to the original values. Thus, the contour mapping scheme is very
robust in the presence of noise.

8.2.4 Sensitivity to δ
We study how sensitive the accuracy of the constructed contour is
when use different δ. We still use the percentage of nodes having
relative error ≤ 5% to measure the accuracy and plot the result
in Figure 10. From the figure, we see that the accuracy does not
degrade too much when using various values for δ. Contrary to what
one might expect, the accuracy stays constant after δ = 20 because
we apply suppression only over a single hop neighborhood. As a
result, the number of reporting nodes remains fixed beyond a certain
δ (here, beyond δ = 25), since at least one node has to report in
each one-hop neighborhood. When we use multi-hop suppression
described in Section 5.1, the accuracy of the constructed contour
will go down with step-size, since the number of nodes that send
reports will also be severely limited.

8.3 Detection of faulty sensors
One of the applications of the contour mapping scheme is the ability
to detect faulty sensors. We use a simplified version of the LOCI
algorithm [16] to detect faulty sensors in the data set, as specified in
Section 7.3. We randomly choose m sensor nodes and let each of
them be assigned a random value which deviates more than 3δ from
the actual event value at that point. Specifically, at the sink, we
calculate the variance of each sensor’s assigned value from that of

0 5 10 15 20 25
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

δ

%
of

no
de

s w
ith

 re
lat

ive
 er

ror
 ≤

5%

Figure 10: Accuracy of reconstructed contour vs. δ

0

500

1000

1500

0

500

1000

1500
0

50

100

150

200

250

300

X (meter)Y (meter)

Va
ria

nc
e

Figure 11: Variance of reading values at sensor nodes -

the faulty sensors are at (250, 250) and (750, 400)

its one-hop neighbors to detect the faulty nodes. Figure 11 plots the
variance for a scenario when m = 2. The two peaks in the figure
are located at (250, 250), (750, 400) and respectively correspond
to the locations of the faulty nodes.

8.4 Spatial-temporal event monitoring
To evaluate the performance of the combined spatial-temporal sup-
pression algorithm, we simulate a time-varying event. Specifi-
cally, we let M(i, t)(i = 1, . . . , 3) increase linearly over time, i.e.,
M(i, t) = M(i, 0) + αit. The three sources have various increas-
ing rates, α1 = 0.05, α2 = 0.07, α3 = 0.1. Consequently, the
actual reading value at sensor nodes may increase at different rates.
We simulate a 1000-second time period during which each sensor
node checks its observed value for every 200 seconds.

Without temporal and spatial suppression, there should be 5∗528 =
2640 reports generated. We enable both temporal and spatial sup-
pression. Both suppression mechanisms have the same threshold,
δ = 20. Table 3 gives the number of reports actually sent out
and received for each 200-second time interval. It can be seen
that over each time epoch, the number of reports that are generated
actually decreases. This decrease is due to temporal suppression.
As a result, the delivery ratio of packets at the sink also improves
tremendously from 80% in the first epoch to 91% in the fifth epoch.
In all, 1637 reports are sent out. This 40% saving is due to both
spatial and temporal suppression.

8.5 Contour maps for residual energy moni-
toring

11

[0, 200) [200, 400) [400, 600) [600, 800) [800, 1000)
351 328 311 302 242
80% 82% 83% 82% 91%

Table 3: Results for temporal suppression (The first

row gives the time epochs over which data is sensed at

each sensor. The second row gives the total number of

reports sent out during each time epoch. The third row

gives the percentage of reports that are delivered to the

sink.)

0
500

1000
1500

2000
2500

0

1000

2000

3000
0.1

0.2

0.3

0.4

0.5

X (meter)Y (meter)

Re
sid

ua
l e

ne
rgy

 (J
)

Figure 12: Contour of residual energy in sensor nodes

Another application of contour mapping is to diagnose the health of
the network by monitoring residual energy in the sensor network.
Since energy monitoring is usually used on large time scale, we
simulate a 7000-second data collection process in which each sensor
generates a report for every 1000 seconds. The initial energy for
each sensor node is assumed to be uniformly distributed between
0.2 and 0.5 Joules, since all sensor nodes may have delivered uneven
volumes of traffic.

The sink collects residual energy reports on a periodic basis from
sensor nodes. Nodes send reports according to the spatial-temporal
suppression algorithm and the step function described in Section 7.2.
We subdivide the levels obtained in Equation 1 into two to obtain a
total of four energy levels.

We plot the constructed residual energy contour at T=1000 seconds
in Figure 12. It shows the residual energy contour built by the
proposed algorithm. It can be seen that the nodes closer to the
sink consume much more energy, which is to be expected in sensor
networks since nodes close to the sink have to route packets for the
rest of the network, and this routing load increases as the distance
from the sink decreases. Out of the 529 nodes in the sensor network,
the contour is drawn based on reports from only 116 nodes, yet the
error in measurements is less than 10%.

9. RELATED WORK
We briefly review related work in this section.

Hellerstein et al. [11] propose to construct isobar maps in sensor
networks. In their work, each sensor is associated with a bounding
box and an attribute. The isobar aggregates sensors with the same
attribute that are close together. They show how in-network merging
(either accurate or lossy) of isobars helps reducing the amount of
communication. In the isobar computation, every sensor has to
participate explicitly and pass merged isobars to its parent in the
routing tree. Zhao et al. [25] applies similar techniques to construct

an approximate view (at the sink) of the residual energy of sensors
in the network. Zhao et al. [26] propose a monitoring infrastructure
that can identify system failures and resource depletion. They
propose a novel tree construction algorithms that enables energy-
efficient computation of some classes of aggregates (sum, average,
count) of network properties (loss rate, energy level, packet count,
etc). In our work, we do not need every sensor to communicate.
The sink knows the location of each sensor and the sink constructs
the contour map.

Bandyopadhyay and Coyle addresses the issue of temporal and
spatial sampling rates under conditions of minimum energy usage.
However, they assume enough channels are available so that colli-
sion free scheduling can be constructed. Ganesan et al. [8] observe
that spatio-temporal irregularities in sensor networks impact many
performance issues in sensor networks. To mitigate the impact of
irregularity, for data aggregation and compression, they propose to
apply spatial interpolation of data and temporal signal segmentation
followed by alignment. To reduce the cost of data-centric storage
and routing, they propose the use of virtualization and boundary
detection. Our techniques automatically takes care of these irreg-
ularities since redundant reports from dense areas are suppressed
and sensor readings from those with no direct report are interpolated
spatially and temporally.

There are many other data reduction techniques in the literature.
Some focuses on computing simple functions over the readings of
sensor networks,e.g. [13, 18, 24]. Przydatek et al. [18] focus on
the security aspects of data aggregation. Trading aggregation ac-
curacy with communication cost is studied in [24]. Giridhar and
Kumar [9] characterize the rate at which certain classes of functions
can be computed and communicated in sensor networks. More so-
phisticated aggregation functions such as wavelet histograms has
also been proposed [11]. Application-specific compression tech-
niques are proposed in [20]. These sophisticated techniques work
well with large amount of data produced by sensors. They do
not apply to sensor networks where the data is small. A storage
and search system [7] is proposed as an efficient mechanism for
sensor network applications. In-network wavelet-based summa-
rization and progressive aging of summaries are used to support
long term querying in storage and communication-constrained sen-
sor networks. They show that these mechanisms support efficient
drill-down search over summaries. Our techniques target sensor
networks with different capabilities, i,e, sensors have very limited
storage space and computational power. We argue that this enables
economical deployment of large-scale sensor networks.

We believe the key security threat is that the sink can not distinguish
correct reports from forged ones. The problem of detecting forged
reports by up to D compromised sensors and dropping them has
been studied in [22, 27]. If attackers can compromise D sensors,
then they can deploy sensors at any given location (configured with
keys recovered from those compromised sensors) to inject forged
reports and can not be detected. Our location-based scheme is more
secure. Attackers compromise D nodes can only forge reports on
events in a certain location, not in any other locations.

10. CONCLUSION
Wireless sensor networks hold great promises for monitoring the en-
vironment and providing timely sampling of unusual events and the
network itself. Moreover, diagnosis of faulty and energy-depleting
sensors is critical to the health of the sensor network. However,
current solutions cannot achieve the goals of adaptive and timely

12

sampling, robust monitoring, and low communication cost.

In this paper, we propose to use contour maps to effectively balance
between these different goals. Our solution allows for progressive
sampling of the field, and efficient local suppression of data. We
describe novel algorithms to perform in-network data suppression
both spatially and temporally. In addition, the design allows for
reconstructing contours at the sink using interpolation and smooth-
ing, to protect the sensor values from malicious attacks. The design
can be applied in many scenarios, and we use three examples —
spatial-temporal event monitoring, residual energy monitoring and
faulty sensor detection— to showcase the potential applications.
Our simulation results confirm the effectiveness of our solution in
terms of data reduction, accuracy, energy saving.

11. REFERENCES
[1] http://www.cens.ucla.edu/seminars/slides/oct 17 han.ppt.

[2] http://www.cs.berkeley.edu/awoo/smartdust.

[3] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. CACM, 13(7):422–426, 1970.

[4] M. Chu, H. Haussecker, and F. Zhao. Scalable
information-driven sensor querying and routing for ad hoc
heterogeneous sensor networks. Int’l J. High
Performance Computing Applications, 2002.

[5] C.Schurgers, V.Tsiatsis, S.Ganeriwal, and M.Srivastava.
Topology management for sensor networks: Exploiting
latency and density. In ACM MOBIHOC, 2002.

[6] S. Ganeriwal, C. C. Han, and M. Srivastava. Spatial average
of a continuous physical process in sensor networks. In
Poster in ACM Sensys, 2003.

[7] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and
J. Heidemann. An evaluation of multi-resolution storage for
sensor networks. In Proceedings of the first international
conference on Embedded networked sensor systems,
pages 89–102. ACM Press, 2003.

[8] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin. Coping
with irregular spatio-temporal sampling in sensor networks.
SIGCOMM Comput. Commun. Rev., 34(1):125–130,
2004.

[9] A. Giridhar and P. R. Kumar. Data fusion over sensor
networks: Computing and communicating functions of
measurements. 2003.

[10] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and
T. Abdelzaher. Range-free localization schemes for large
scale sensor networks. In Proceedings of the 9th annual
international conference on Mobile computing and
networking, pages 81–95, 2003.

[11] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek.
Beyond average: Toward sophisticated sensing with querie.
In Information Processing in Sensor Networks (IPSN),
pages 63–79, 2003.

[12] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: a
tiny aggregation service for ad-hoc sensor networks. In
Proceedings of OSDI, 2002.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks.
SIGOPS Oper. Syst. Rev., 36(SI):131–146, 2002.

[14] D. Niculescu and B. Nath. Trajectory based forwarding and
its applications. In ACM MOBICOM, pages 260–272,
2003.

[15] ns2 network simulator. http://www.isi.edu/nsnam/ns/.

[16] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and
C. Faloutsos. LOCI: Fast outlier detection using the local
correlation integral. In Proceedings of the 19th
International Conference on Data Engineering
(ICDE), pages 315–326, 2003.

[17] product specification.
http://www.rfm.com/products/data/tr1000.pdf.

[18] B. Przydatek, D. Song, and A. Perrig. Sia: secure information
aggregation in sensor networks. In Proceedings of the first
international conference on Embedded networked
sensor systems, pages 255–265. ACM Press, 2003.

[19] rf monolithics. http://www.rfm.com.

[20] L. Vasudevan, A. Ortega, and U. Mitra. Application-specific
compression for time delay estimation in sensor networks. In
Proceedings of the first international conference on
Embedded networked sensor systems, pages 243–254.
ACM Press, 2003.

[21] Y.B.Ko and N.H.Vaidya. Location-aided routing (lar) in
mobile ad hoc networks. In ACM MOBICOM, 1998.

[22] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route
detection and filtering of injected false data in sensor
networks. In IEEE INFOCOM, 2004.

[23] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac
protocol for wireless sensor networks. In IEEE
INFOCOM, 2002.

[24] X. Yu, S. Mehrotra, N. Venkatasubramanian, and W. Yang.
Approximate monitoring in wireless sensor networks. 2003.

[25] J. Zhao, R. Govindan, and D. Estrin. Residual energy scans
for monitoring wireless sensor networks. In IEEE Wireless
Communications and Networking Conference
(WCNC), 2002.

[26] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates
for monitoring wireless sensor networks. In First IEEE
International Workshop on Sensor Network Protocols
and Applications (SNPA), 2003.

[27] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved
hop-by-hop authentication scheme for filtering false data in
sensor networks. In IEEE Symposium on Security and
Privacy, pages 260–272, 2004.

13

