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Abstract

Fair queueing of rate and delay-sensitive packet flows
in a shared-medium, multihop wireless network remains
largely unaddressed because of the unique design issues
such as location-dependent contention, spatial channel
reuse, conflicts between ensuring fairness and maximizing
channel utilization, and distributed fair scheduling. In this
paper, we propose a new topology-independent fair queue-
ing model for a shared-medium ad hoc network. Our model
ensures coordinated fair channel access among spatially
contending flows while seeking to maximize spatial chan-
nel reuse. We describe packetized algorithms that realize
the fluid fairness model with analytically provable perfor-
mance bounds. We further design distributed implementa-
tions that approximate the ideal centralized algorithm. We
evaluate our design through both simulations and analysis.

1. Introduction

Fair queueing has been a popular paradigm for provid-
ing fairness, minimum throughput guarantees and bounded
delay access for packet flows in wireline networks [1, 2]
and packet cellular networks [3, 4]. However, the prob-
lem of fair packet scheduling in a shared-medium, mul-
tihop wireless network has remained largely unaddressed.
Adapting fair queueing to such a network is challenging
because of the unique issues such as location-dependent
contention among transmitting flows, spatial channel reuse
through concurrent flow transmissions in a partially con-
nected network, location-dependent channel error, and the
distributed nature of packet scheduling in ad hoc networks.
In this work, we first propose a precisely quantifiable defi-
nition of fairness and then describe a packetized algorithm
to achieve such fairness model.

In wireline networks, a popular model for packet
scheduling over a communication link is the fluid fair
queueing (FFQ) model [1, 2]. In this model, packet flows
are modeled as fluid flows through a channel of capacity C,
and every flow f is assigned a weight rf ; over any infinites-
imally small window of time [t; t+�t], a backlogged flow

f is allocated a channel capacity ofC ��t�(rf =
P

i2B(t) ri),
where B(t) is the set of backlogged flows at time t. Packet
scheduling algorithms such as WFQ and SCFQ seek to
serve packets in an order that approximates FFQ as closely
as possible while maintaining low implementation com-
plexity. Wireless fair queueing in packet cellular networks
[3, 4] further addresses the issue of location-dependent and
bursty channel error; the idea is to allow for leading flows
(that lead ahead of their error-free reference services) to
gracefully give up their leads in order to let lagging flows
(that lag behind their error-free services due to channel er-
rors) catch up their lags, thus ensuring fair channel access
for both types of flows over a larger time interval. At
first glance, it would seem that the wireless fair queueing
model and algorithms developed for packet cellular net-
works are equally applicable or can be readily extended
to shared-medium ad hoc networks. However, there are at
least three characteristics of ad hoc networks that render this
fair queueing paradigm inapplicable:

� Location-dependent contention: In an ad hoc network,
wireless transmissions are locally broadcast in the
shared physical channel. The locality of wireless trans-
missions implies that channel contention is location-
dependent. Nodes within the transmission range of
an ongoing conversation are typically restrained not
to transmit in order to avoid collisions. In wireline
or packet cellular networks, the packet scheduler im-
plemented at each network node/switch only needs to
consider flows that share the link, and scheduling de-
cisions over each link are performed independently.
However, in ad hoc networks, packet scheduler at each
local switch has to arbitrate spatial contentions be-
tween its flows and other flow transmissions in its spa-
tial locality, in order to ensure coordinated fair channel
access among contending flows (e.g. flows F1; F2; F3
in Figure 1) that contend both in the time domain and
in the spatial domain.

� Spatial channel reuse: The multihop wireless nature
of ad hoc networks makes spatial channel reuse pos-



sible: for a given flow, other flows may transmit si-
multaneously if they are out of the transmission range
of the current flow and are not interfering with each
other (e.g. flows F1 and F4 in Figure 1). Note that,
however, channel reuse is a spatial property and the
amount of spatial reuse is dynamically changing de-
pending upon which flows are transmitting at the mo-
ment. How to share the wireless medium fairly while
maximizing spatial channel reuse poses another design
challenge for fair queueing.

� Conflicts between ensuring fairness and maximizing
channel utilization: Maximizing channel utilization in
an ad hoc network may show preference for certain
flows and starve other flows, thus violating the fair
sharing principle. In a generic-topology ad hoc net-
work, the two goals of ensuring fairness and maximiz-
ing channel utilization may be in conflict.

In this work, we seek to address the above issues.
The three contributions of this paper are: (a) a topology-
independent fairness model that ensures coordinated fair
channel access among spatially contending flows while
seeking to maximize spatial channel reuse, (b) design of a
packetized fair queueing algorithm that realizes the fairness
model with analytically provable performance bounds, and
(c) distributed implementations of the ad hoc fair queueing
algorithm. We show the effectiveness of our design through
both simulations and analysis.

The rest of the paper is organized as follows. Section
2 describes the network model and identifies the key de-
sign issues. Section 3 proposes a model for fair queueing
in an ad hoc network. Section 4 presents a packetized algo-
rithm that realizes the fairness model and analyzes its prop-
erties. Section 5 describes distributed implementations of
the packetized algorithm. Section 6 presents a simulation-
based performance evaluation of the proposed design. Sec-
tion 7 describes related works, and Section 8 concludes the
paper.

2. Network Model and Design Issues

2.1. Network Model

We consider a packet-switched multihop wireless net-
work in which a single physical channel with capacity C is
available for wireless transmissions. Transmissions are lo-
cally broadcast and only receivers within the transmission
range of a sender can receive its packets. Each link-layer
packet flow is a stream of packets being transmitted from
the source to the destination, where the source and destina-
tion are neighbors. We define two flows as contending flows
if either the sender or the receiver of one flow is within the
transmission range of the sender or the receiver of the other
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Figure 1. Spatial Contention and Reuse

flow1 [5].
We make three assumptions [9, 8, 5, 7]: (a) neighbor-

hood is a commutative property and hence flow contention
is also commutative, (b) a node cannot transmit and receive
packets simultaneously, and (c) a collision occurs when a
receiver is in the reception range of two simultaneously
transmitting nodes, thus unable to cleanly receive signal
from either of them; we ignore capture effect in this paper.
We do not explicitly consider mobility and non-collision-
related channel errors in this paper.

2.2. Design Issues in Ad Hoc Fair Queueing

This section identifies two issues unique to fair queueing in
ad hoc wireless networks.

2.2.1 Fairness for spatially contending flows
In a wireline or packet cellular network, packet scheduler
implemented at each link needs to consider flows that are
contending for the link only. Fluid fairness defined for such
networks is, in essence, a local property for transmitting
flows over each link and fair queueing algorithms ensure
local fairness in the time domain among contending flows
that share a single link.

Location-dependent contention in a shared-medium ad
hoc network implies that fairness model cannot be defined
with respect to “local” flows in a node only, and has to em-
brace spatial transmission constraints. Ideally, we would
still like to preserve the local fairness property inherent in
wireline fair queueing model as much as possible, while ad-
dressing the issue of spatial contention among flows.

An additional issue is to define a fairness model that
takes into account spatial channel reuse. This is nontriv-
ial since spatial reuse is flow dependent: for certain flows,
no spatial reuse is possible; for other flows, multiple con-
current flow transmissions can take place.

2.2.2 Conflicts between fairness and maximal channel
utilization

In fair queueing over ad hoc networks, we seek to ac-
complish two goals: (a) ensure fairness among contend-
ing flows; this is the design tenet of every fair queueing
algorithm; and (b) maximize spatial channel reuse thus in-
crease the overall effective capacity. Ideally, we would like
to achieve both goals at the same time. However, this is
not always possible in a generic-topology ad hoc network.

1Following the CSMA/CA medium access paradigm, we assume that
data transmission will be preceded by a control handshake. Thus the nodes
in the neighborhood of both the sender and the receiver must defer trans-
mission to ensure a successful handshake.



Consider the five-flow example shown in Figure 1.b. The
system capacity will be 2C if we let F3 and F5 transmit all
the time. However, it is easy to verify that the total effec-
tive capacity will be less than 2C if all five flows have to
transmit and get a fair share. This example illustrates the
fundamental conflict between achieving flow fairness and
maximizing overall system throughput.

3. A New Fair Queueing Model

In this section, we will develop a topology-independent
fairness model for ad hoc networks. In the model to be de-
veloped, the granularity of each packet is a bit, and each
flow f is assigned a weight rf . The goal is to define a
bit-by-bit fair queueing model such that each packet flow
receives a fair share in proportional to its weight rf while
addressing the design issues identified in Section 2.2. We
assume a perfect knowledge on the network topology and
flow information at the moment.

Our proposed model seeks to provide the maximal fair
share to each flow according to each flow’s flow weight.
That is, given a flow’s weight, the flow will receive a max-
imum fair share of bandwidth in proportional to the flow’s
weight. In the following, we describe the proposed fairness
model through a step-by-step procedure. Our model ensures
fair channel access while seeking to minimize the total ex-
pected transmission times via spatial reuse, thus maximiz-
ing overall effective throughput of the network.

3.1. Generating a flow contention graph

We first convert packet flows in a network graph into a
flow contention graph, which characterizes the contention
relationship among flows (see Figure 1 for an example). In
a flow graph, each vertex represents a backlogged flow, and
an edge between two vertex denotes two contending flows.
If two vertices are not connected, these two flows can trans-
mit simultaneously, thus making spatial reuse possible.

3.2. Choosing appropriate flow sets to define a fair
queueing model

Fair queueing is typically defined with respect to a set of
contending flows that compete for limited shared resources.
In wireline networks, the definition of a contending flow
set is straightforward: it consists of flows contending for an
output link. In an ad hoc network, the spatial correlation
among transmitting flows complicates the choice of con-
tending flow set for fair queueing definition.

In this work, we seek to preserve the “local” fairness
property of fair queueing while addressing the issue of spa-
tial contention between flows: we partition the flows in the
network into multiple partially contending flow sets, and a
fair queueing model is defined with respect to each flow set.
Each partially contending set is defined as a closed partially
connected flow graph.
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Two properties of a partially contending flow set follow
immediately: (a) partially contending flow sets are discon-
nected/decoupled from each other and flow scheduling can
be performed in each set independently; (b) flows in a par-
tially contending flow set are not necessarily mutually con-
tending, thus spatial reuse is possible in each set.

3.3. Resolving the conflicts between fairness and
maximal spatial reuse

Since flows in a partially contending flow set may not
be mutually contending, spatial reuse is possible within the
flow set. The issue to address is how to resolve the conflicts
between ensuring fairness and maximizing spatial reuse in
a generic-topology ad hoc network. Two extreme points in
the solution space (see [13] for a detailed discussion on the
solution space) are: (a) maximize channel reuse as much
as possible even at the cost of violating fairness; (b) ensure
fairness, and maximize spatial reuse subject to the fairness
constraint. In this work, according to fair sharing principle,
we choose option (b), and place ensuring fairness as our
primary design tenet whereas maximizing spatial reuse as
secondary.

3.4. Seeking to maximize spatial channel reuse

Therefore, we seek to maximize spatial reuse subject to
the fairness criterion. To this end, an intuitive model is to
impose a maximality property upon any fair allocation pol-
icy, i.e., a fair channel allocation in which no further spatial
reuse assignment can be made without violating the fairness
constraint. However, realizing this model is nontrivial as il-
lustrated by the example in Figure 2.

In the example, we have four flows with equal weights.
The scheduling precedence based on a standard wireline
FFQ algorithm is shown in Figure 2. Hence, in wireline
fair queueing, this round of bits are transmitted in the strict
order of F1:1; F2:1; F3:1; F4:1; where Ff:p denotes the
p-th bit of flow f . Now let us look at ad hoc networks.
We start by transmitting F1:1. Since flows F1 and F3
can transmit simultaneously according to the flow graph,
we concurrently transmit both bits F1:1 and F3:1 in or-
der to increase spatial reuse2. However, in wireline fair
queueing, we should transmit F2:1 before F3:1 since it has
a smaller finish tag. Transmitting F3:1 before F2:1 vio-
lates the transmission precedence, as well as instantaneous

2If we do so, a simple calculation reveals that we can achieve total
throughput of 2C . Otherwise, if we transmit according to the strict order
F1:1; F2:1; F3:1; F4:1; no spatial reuse is possible and we only have C .



fairness constraint, imposed by the standard wireline fair
queueing.

Lookahead window to enable spatial reuse Therefore,
in order to enable spatial reuse, we have to locally swap the
transmission orders so that flow F3 can transmit its F3:1
bit before flow F2 sends F2:1. This motivates a “lookahead
window” for ad hoc fair queueing, in order to make spatial
reuse possible in a generic topology ad hoc network. At any
time instant, the scheduler schedule bits within a lookahead
window � (defined in virtual time), and may locally switch
the transmission order for the bits within the window. Ba-
sically, a lookahead window of � enables the scheduler to
look ahead in virtual time by � rounds, and may swap the
service order of packets in the window in order to increase
spatial reuse.

In general, the choice of a large � tends to increase spatial
reuse to certain degree. However, this is achieved at the cost
of violating instantaneous fairness. Therefore, we bound the
value of � to ensure long-term fairness.

Maximizing spatial reuse within a static lookahead win-
dow is a minimum graph coloring problem If the
scheduler allows for local swapping of transmission orders
within a lookahead window, then maximizing spatial reuse
is equivalent to transmitting the full window of packets in
minimum time. This is equivalent to a minimum graph col-
oring problem: let each vertex denote a flow bit and each
edge in the flow graph denote a spatial contention between
the two nodes, assign a color to each vertex such that the
colors on the pair of nodes incident to any edge be different
(thus avoid spatial collisions), the goal is to find the mini-
mum number of colors for the graph.

Sliding window for ad hoc fair queueing However, it
should be noted that maximizing spatial reuse in ad hoc
fair queueing is not equivalent to a static minimum coloring
problem. Fair queueing is a dynamic scheduling paradigm.
Whenever the scheduler schedules/transmits a bit (or sev-
eral bits due to spatial reuse) within the current lookahead
window, it will move its window ahead. As a consequence,
we arrive at a dynamic sliding window problem. This brings
several new design issues. First, we now have a dynamic
minimum coloring problem since the number of bits within
the lookahead window at any instant may be dynamically
changing (in fact, some bits within the window range may
not be present at the moment since they have been transmit-
ted in advance via spatial reuse). Second, in general, mini-
mizing transmission times of packets in the current window
tends to maximize overall expected throughput but they are
not equivalent. Third, we have to balance two design goals:
(a) transmit the current window of bits as soon as possible,
and (b) move the window as fast as possible so that more
new bits can move into the lookahead window.

3.5. A fair queueing model for ad hoc networks

A brief summary of our design decisions so far is the
following: (a) We partition flows in the network into mul-
tiple independent “partially contending flow sets.” We de-
fine a fluid fair queueing model for flows within each set.
(b) The fluid queueing model is specified as follows: Each
flow receives its weighted fair services, which come from
both the basic physical channel and spatial reuse. We seek
to maximize spatial reuse subject to the fairness constraint.
(c) In order to enable and increase spatial reuse, at any time
instant, the scheduler schedules bits (from different packet
flows) within a lookahead window �, and may locally swap
the transmission orders for bits within the window. Bound-
ing the window � ensures fairness over a larger time inter-
val. (d) In order to maximize spatial reuse, we seek to min-
imize the transmission times of packets within the current
lookahead window. This is equivalent to a dynamic mini-
mum graph coloring problem as the window moves forward
after each transmission.

4. A Packetized Fair Queueing Algorithm

We now describe an idealized ad hoc fair queueing algo-
rithm that realizes the fluid fairness model of Section 3. The
algorithm is idealized because we assume perfect knowl-
edge of the per-flow information. For simplicity of presen-
tation, we assume that all packets are of the same size Lp,
and that each packet is transmitted in one slot. Comments
on variable packet size are given in [14].

4.1. Algorithm description

Our packetized algorithm is composed of two key compo-
nents: a basic scheduling loop and an adaptive dynamic col-
oring algorithm.

4.1.1 The basic scheduling algorithm
An overview of the basic scheduling is the following:

1. We simulate weighted fair queueing (WFQ) to assign
two tags for each arriving packet: a start tag and a fin-
ish tag. Specifically, a packet with sequence number n
of flow i arriving at time A(ti;n) is assigned two tags:
a start tag si;n and a finish tag fi;n, defined as follows:

si;n = maxfv(A(ti;n)); fi;n�1g; fi;n = si;n + Lp=ri

where v(A(t)) is derived from the FFQ: dv=dt =
C=

P
i2B(t) ri; C is the channel capacity and B(t) is

the set of backlogged flows at time t.

2. The scheduler maintains a lookahead window � of
packets to make scheduling decisions for each slot,
with � being set to be � = maxf2F d

Lp
rf
e; where d�e

is the ceiling function that rounds a float-point value to
its closest integer upper bound.



3. The virtual time V(t) of the ad hoc scheduler at t is set
to be the start tag of the packet that has the smallest
finish tag among packets which are being served at t.

4. The actions in the scheduling loop are the following:

(a) for all the packets with start tag being in the range
of [V (t); V (t) + �], apply an adaptive coloring
algorithm to partition flow packets into m(t) dis-
joint sets, denoted by C1, C2; . . . , Cm(t), such that
within each set concurrent transmissions are pos-
sible. The dynamic coloring algorithm, to be de-
scribed in next section, seeks to form a number
of disjoint sets as small as possible.

(b) among flows with start tag within [V (t); V (t) +
�]; pick the flow f with the least finish tag, trans-
mit the head-of-line packets of f and all flows in
the disjoint set Cf that flow f belongs to.

(c) update V (t) according to Step (3) and move the
sliding window forward to the next packet that
has the smallest finish tag.

Several remarks on the algorithm are available: (a) Setting
� = maxf2F d

Lp
rf
e allows each flow to transmit at least one

full packet by the end of the window. (b) Since all flows
have identical packet size Lp, as long as the physical chan-
nel capacity C is fixed, all concurrent flows can complete
their packet transmissions in the shared wireless medium
simultaneously. (c) The virtual time V (t) typically moves
much faster than t due to spatial reuse, and the sliding win-
dow [V (t); V (t) + �] may leap forward for multiple slots
after each slot transmission.

In the packetized algorithm, we have two goals to
achieve: (a) minimize the total number of disjoint setsm(t),
thus minimize the total expected transmission times for the
current window; (b) move the window forward as fast as
possible. Our algorithm seeks to strike a balance: upon ev-
ery slot transmission, the window moves forward at least
one slot; meanwhile, the number of disjoint sets will not
increase when window moves.

4.1.2 An adaptive algorithm to the dynamic graph col-
oring problem

We now present an adaptive solution to the following dy-
namic graph coloring problem: at any time t, consider n
flows and each flow f has kf (t) packets in the window
[V (t); V (t)+�], how to transmit

P
f kf (t) in minimal time

subject to the spatial contention topology specified by the
flow graph.

Our algorithm makes use of two facts: (a) Consider
the problem setting of Section 4.1.1, within any window
[V (t); V (t) + �]; each flow f has at most d �

rfLp
e packets.

(b) Dynamic graph coloring for two consecutive transmis-
sions is correlated in general. Some flows are present in

both windows; hence, these two windows have overlaps.
This implies that a recursive solution to the dynamic color-
ing problem is possible.

The detailed algorithm works as follows:

1. At t = 0, use an approximation algorithm to solve the
following static minimum coloring problem: Let each
vertex denote a flow packet and each edge denote a
contention between the two vertices in the graph, con-
sider kf (0) = d

�
rfLp

e vertices for flow f , assign a
color i to each vertex such that the colors on the pair of
nodes incident to any edge be different (thus avoiding
contentions), the goal is to find the minimum number
of colors m for the graph.

The solution partitions the graph into m(0) disjoint
sets, denoted by C1, C2; . . . , Cm(0), and each flow f
is associated with kf (0) sets. A straightforward ap-
proximation is the so-called greedy algorithm [10].

2. At time (t � 1); denote the m(t � 1) disjoint sets as
C1, C2; . . . , Cm(t�1): Each set Ck has wk flows, i.e.,
Ck =: ffk1 ; : : : ; f

k
wk
g:

3. At time t, the sliding window moves forward to
[V (t); V (t) + �] and some new packets move into the
window. We take the following actions for packets in
[V (t); V (t) + �]:

(a) For any unserved packets that come from the
previous window [V (t � 1); V (t � 1) + �]; re-
tain the disjoint sets that these unserved packets
belong to, say, C1, C2; . . . , Cm0(t). Obviously,
m0(t) � m(t� 1):

(b) For each of the newly joined packets, denoted by
pf from flow f ,

i. merge pf with one of the existing m0(t) dis-
joint sets. If pf is not contending with any
flow in the set Ck; then it declares a “join
success,” pf joins set Ck and records the set
ID of Ck. In this step, pf performs con-
tention checks with every flow in the set
Ck =: ffk1 ; : : : ; f

k
wk
g; by assuming that all

these wk flows had packets, waiting to be
served, in the set.

ii. If no merge if possible, create a new set
Cm0(t)+1; and pf joins the new set. Now,
the existing sets are the following: C1, C2;
: : : ; Cm0(t); Cm0(t)+1: Then update the new
number of sets as m(t) = m0(t) + 1:

(c) retain all the disjoint sets C1, C2; : : : ; Cm(t) until
t+ 1.

There are several features regarding the above algorithm:
(a) As time evolves, the total number of disjoint sets (i.e.,
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the number of colors) will never increase. We will show
this property in Section 4.2. (b) Our algorithm is self adap-
tive in the sense that at each time instant, it seeks to reduce
the total number of disjoint sets from the last time instant.
This is important when we may only have a poor approxi-
mation algorithm in the initial step. (c) In Step 3.(b).i, the
assumption of all flows are present in the set Ck is crucial
in the join test for pf : (d) In Step 3.(b).i, the join test for
pf should start with the set Ck which has the smallest finish
tag for packets in the current window [V (t); V (t)+�]. This
way, it helps to move the window forward faster.

Several optimization techniques are available that further
improve the algorithms of this section; the details are pro-
vided in [14]. We omit them here due to lack of space.

4.2. Analytical properties

In this section, we characterize the analytical perfor-
mance of the above algorithm. The proofs are given in [14].

Fairness guarantee

The following theorem states that short-term inter-flow
fairness is mainly governed by the lookahead parameter �.
This result is quite intuitive since the service differences be-
tween any two flows in the ideal fluid fair queueing model
are upper bounded by �.
Theorem 4.1 (Short-term Fairness Property) Consider a
fixed flow set F in which n flows remain backlogged during
[t1; t2]. Let Wf (t1; t2) denotes the service (in bits) that flow
f receives in the lookahead packet fair queueing (LPFQ) al-
gorithm of Section 4.1 during [t1; t2]. Then the difference in
the service received by two flows f andm at a LPFQ server
is given as:

�
�
�
�
Wf (t1; t2)

rf
�
Wm(t1; t2)

rm

�
�
�
� � �+

Lp

rm
+
Lp

rf
; (1)

where � is the lookahead parameter in bits.

The following theorem shows the long-term fairness
property: as t becomes large, the effect of short-term fair
service deviation � diminishes.

Theorem 4.2 In the problem setting of Theorem 4.1, let
�t = t2 � t1; then the following holds:

lim
�t!1

Wf (t1; t1 +�t)

Wm(t1; t1 +�t)
=

rf

rm
: (2)

Properties of the adaptive coloring algorithm

In the following theorem, we will show that the total
number of disjoint sets will never increase as time t evolves.
This guarantees that the transmission times for any sliding
window of packets will never increase. Therefore, it tends
to decrease the total number of transmissions thus increas-
ing spatial reuse.

Theorem 4.3 (Non-increasing total number of disjoint
sets) Consider n flows, and each of which contributes ex-
actly one vertex in the graph coloring problem. Define the
total number of sets at t, denoted as N (t), as the number
of disjoint sets assuming all n flows were present at t. Then
N (t) is non-increasing as t evolves. That is, for any given
t, the following holds: N (t) � N (t� 1):

Spatial reuse

The following corollary states that the total expected
transmission times for current window are not increasing
with t. This result follows readily from Theorem 4.3.

Corollary 4.1 (Non-increasing expected transmission
times for any sliding window) In the setting of Theorem
4.3, since flows in each disjoint set can be concurrently
transmitted in one slot, the worst-case total expected
transmission times for the current window, by assuming
that the window is full, are never increasing.

Throughput and delay bounds

First note that each backlogged flow will always receive
a basic fair service by assuming that no spatial reuse were
available. That is, each flow receives at least a fair share
from the basic physical channel capacity C. Then both the
long-term throughput and packet delay bounds, developed
for a standard WFQ scheduler [2] hold in our case. We
have not included them here due to lack of space. Short-
term throughput can differ by � because a flow may have
received services in advance, which is upper bounded by �,
due to concurrent transmissions in the previous time inter-
val. In addition to the basic services, each flow may receive
additional fair services due to spatial reuse.

5. Distributed Implementation

5.1. Two design issues
Distributed fair queueing In an ad hoc network, con-
tending flows originate from different sending nodes, and
no single logical entity for scheduling of these flows is
available. Besides, the flow information is “distributed”
among these sending nodes, and each sender does not have
direct access to other flows’ information at other senders.

Information propagation in a broadcast medium In or-
der to achieve distributed fair queueing, we have to propa-
gate certain flow information (e.g., flow weights), in mini-
mum time, to the entire network graph. In a network that
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has point-to-point links, the optimal solution to propagate
information from a given node to all the rest nodes of the
network in minimum time is to build up a shared, minimum-
height spanning tree. However, in a multihop wireless net-
work, the wireless medium is a local broadcast channel, and
there are potential collisions for packet transmissions in a
spatial locality. As a result, propagating information along
a minimum-height spanning tree may not be optimal any
more! Unlike in a point-to-point link medium, sibling nodes
(located at the same level) in the tree may not be able to
concurrently transmit in a broadcast medium due to spatial
contention. This effectively increases the total propagation
time needed to propagate information to all the nodes along
the tree.

Consider the example shown in Figure 4. Figure 4.(a)
shows the standard spanning tree, and in a network with
point-to-point links, the transmission times to propagate in-
formation from root A to all the rest nodes will be 3 units.
However, since both B and C are within range of E (shown
by the dotted line in the figure), in order to propagate to all
the nodes, sibling nodes B and C cannot transmit concur-
rently to their children (otherwise, E perceives collisions).
Hence, A has to transmit to B and C sequentially, and it
takes 4 units to reach to all nodes, as shown in Figure 4.(b).
However, if we construct the tree as in Figure 4.(c), we only
need 3 units to propagate information from A to all nodes.

5.2. Propagating information along a conflict-free
shared tree

In order to address the above issue, we seek to build
up a core-based shared tree that provides minimum time
transmissions from the core node to all other nodes in the
tree and ensures conflict-free concurrent delivery for sibling
nodes at the same height of the tree.

We start with a standard core-based shared spanning tree;
this can be achieved by constructing the spanning tree for
each node using the breadth-first search algorithm, and se-
lecting the minimum-height spanning tree from these trees.
Given the spanning tree, we resolve collisions among sib-
ling transmitting nodes through delaying packet transmis-
sions along some branches of the tree (see Figure 4(c) for
an example). For this purpose, each transmitting node main-
tains a delay counter Cd, which records the delay time for
the packet transmissions in its branch.

We use a backoff-based mechanism to construct a
conflict-free shared tree. We start from the nodes closest to

the core node. Every transmitting node senses the channel
and waits for a backoff number of minislots before initiat-
ing its RTS-DATA multicast message (no CTS or ACK is
used due to its multicast nature). We set the backoff value
to to be the difference between the height of the tree and the
height of a node’s current branch. This way, we give prior-
ities to the branches with larger height, and may delay the
transmissions of other shorter branches in the presence of
potential collisions. When a node hears either RTS or colli-
sions, it increments its delay counterCd by 1, thus delaying
transmissions along its branch. At the receiver side, a sin-
gle receiver may be within the transmission range of mul-
tiple transmitters. Whenever it hears a collision, it broad-
casts a NACK message to the senders. Upon receiving the
NACK message, the transmitting nodes will randomly de-
cide whether to increase their delay counter Cd by one or
not. More details are given in [14].

5.3. Implementation I: A link-state alike approach

In our first implementation, each node runs a local copy
of the packet scheduler described in Section 4.1. To this
end, the packet scheduler needs to have access to the follow-
ing information: (a) the flow graph that a flow belongs to,
(b) a flow’s weight rf , and (c) which flow is backlogged at
time t and packet arrival times. Among these three types of
information, (a) and (b) can be propagated just once when
the flow was established, but the last type of information
may be dynamically changing and has to be updated online.
However, we do not expect that flows change backlogged
status very often in a typical scenario; even if a flow’s ar-
rival pattern may be quite bursty, the bandwidth-constrained
wireless channel will further amortize packet arrivals and
make flows remain backlogged most of the time.

In order to propagate the flow information to each node,
we adopt a two-logical channel approach by dividing the
physical channel into two logical channels, one for control
and the other for data transmissions. We use the control
channel to propagate the above information along a conflict-
free multicast tree to be described next, and the data channel
to forward data packets. The control and data channels are
logically distinct, but share the same physical channel.

5.4. Implementation II: A backoff-based approach

In our second implementation, we present a backoff-
based distributed algorithm within the framework of
CSMA/CA MAC paradigm.

In our design, we use weighted round robin to approxi-
mate the fair queueing algorithm. To this end, we normal-
ize the flow weight rf for each flow f so that the smallest
flow weight is normalized as one. We seek to schedule rf
packets for each flow f within a minimum cycle period as
time evolves. This is equivalent to a dynamic graph coloring
problem, that is, consider a flow graph that can be colored
with � colors at t. If we define a cycle of � slots, then each



flow will be able to transmit at least rf slots in the cycle.
We use the largest-degree first (LF) algorithm [10] in the
coloring approximation.

Decide cycle length � We use the shared tree of Section
5.2 to propagate the cycle size. In the bootstrapping pe-
riod, the core node will estimate the total number of colors
needed to color the flow contending graph. For example,
set � = (1 + ")� where � is an estimation of the max-
imum flow degree and " is a parameter in 0.03–0.20 [11].
The core multicasts this initial � to each flow. Each flow
then contends for rf slots based on the LF approximation,
and reports to the core the total number of slots it uses to
successfully contend for rf slots. The core adjusts the cy-
cle size accordingly based on the feedback and multicasts a
new cycle size again to every sender. If every flow can be
settled in the previous cycle, the core shrinks the cycle size.
If some flows could not get rf slots, the core increases the
cycle size. After several rounds, the network will converge
to a cycle size. Note that the core of the shared tree does not
maintain any per-flow information during the process.

Individual flow scheduling in a cycle In a CSMA/CA
MAC protocol, there is an RTS-CTS handshake before each
packet transmission. Each transmitting node senses the car-
rier before sending out its RTS, and this is preceded by
a backoff of certain number of minislots. In our design,
we set the backoff value to approximate the LF algorithm.
To this end, we give higher priorities to flows with larger
flow degrees by setting their backoff periods shorter. In the
bootstrapping period, each flow will receive two parameters
from the shared tree: cycle size � and the core’s estimation
of the maximum flow degree �. Starting from the first slot
in a cycle, each flow contends with backoff �� d minislots
(where d is its degree). When the backoff timer expires, if
the sender senses the carrier idle, it sends out its RTS and
occupies the slot in the cycle. Once a flow grabs a certain
slot in a cycle, it will contend for that slot with backoff zero
in future. Each flow repeats contending for each slot in the
cycle until it grabs rf slots.

When neighboring flows have the same flow degree, col-
lisions may happen. Our collision resolution works as fol-
lows: once a flow experiences collision in a cycle, it set its
backoff value to be a random number in [1;� � d] in the
next coming cycle. Note that in the next cycle, flows that
have already successfully grabbed slots in the previous cy-
cles will contend for their ”reserved” slots with zero backoff
value, flows with non-zero backoff values will not induce
any collision in the occupied slots.

Idle flows In the above contending process, for each in-
dividual flow, all the slots before its occupied last slot in a
cycle will be grabbed by either its neighbors or itself. This
means a flow will always be able to hear transmissions in
all these slots before it finishes its transmissions in a cycle.

Once a flow becomes idle, its neighboring flows will be able
to detect an idle slot in the current cycle. Therefore, they
may contend for that slot using backoffs in the next cycle.
If some of them grab that slot successfully, it will report to
the root to initiate possible shrinking of the cycle size. If the
idle flow does not remain idle for more than a cycle period,
it can reclaim its old slots by contending with backoff zero.
If it remains idle for more than one cycle and is backlogged
again, it will be treated as a new flow.

New flows joining and old flows leaving When a new
flow joins, it will try to fit itself into the cycle by contend-
ing with backoffs. If it could not fit into the current cycle
size, it reports to the core node of the shared tree. The core
will then increase the cycle size and let new flows contend.
When an existing flow terminates, other flows treat it as an
idle flow and use the procedure described above to contend
for its idle slots.

6 Simulations

In this section, we evaluate our design of Sections 4 and
5 by simulations. We provide three simulation examples.
Example 1 illustrates the features of ensuring fairness and
increasing spatial reuse, and how idle flows may affect the
optimal spatial reuse. Example 2 shows that our algorithm
achieves both short-term and long-term fairness, throughput
and packet delay bounds. Example 3 evaluates 17 flows in
a more complicated scenario, shows the convergence prop-
erty of the adaptive coloring algorithm, and demonstrates
the fair sharing of spatial reuse among these flows.

Several performance measures are used to evaluate the
algorithm. Wl : number of transmitted packets of the flow
during the simulation lifetime; Ws : number of transmitted
packets of the flow during a small time interval; Davg : av-
erage delay of transmitted packets; Dmax : maximum delay
of transmitted packets. �D : standard deviation of the delay.

Each of our simulations has a typical run of 100; 000
time units. To obtain measurements over short time win-
dows, we measured the performance over 10 different time
windows, each of which has 200 time units, and averaged
the results for the value shown here. In all cases, we as-
sume that the physical channel capacity C is one slot per
time unit.

We consider three types of source traffic in our simula-
tions: constant rate, Poisson and Markov-modulated Pois-
son process (MMPP). For the MMPP sources, the modu-
lated process is a two-state Markov chain. The transition
rate from ON to OFF is 0:9 and OFF to ON is 0:1:

Example 1 In this example, we evaluate the fairness prop-
erty of our idealized algorithm of Section 4, and its effi-
ciency in achieving spatial reuse of bandwidth. We also
include the simulation results using the distributed imple-
mentation of Section 5 for Scenario (c). We consider seven



flows with equal weights rf = 1, and the flow graph for the
simulation is shown in Figure 5. We evaluate the following
three scenarios:

(a) In this scenario, we set flows to be infinite sources,
i.e., each flow remains continually backlogged all the time.
The throughput result for each flow is shown in Table 1. As
expected, the algorithm achieves both long-term and short-
term fairness and throughput guarantees. In this example,
it achieves 233% of total effective throughput (the through-
put based on a physical channel capacity C is defined to
be 100%). It can be easily verified that 233% is the opti-
mal throughput under fairness constraint. However, we do
point out that, the maximal throughput can be 300%; and is
achieved by concurrent transmissions of flows F0; F3; F5.
In this case, other flows have to be starved in order to sustain
this amount of maximal utilization. This illustrates the fun-
damental conflicts between fairness and maximal through-
put in a generic network topology.

Figure 6 shows the performance of the adaptive coloring
algorithm. In this case, the algorithm quickly (within sev-
eral time units) reaches a total number of three disjoint sets.
The figure also shows that the number of active sets, each of
which has at least an unserved flow, vary from one to three
within each window.

(b) Now we show the throughput and fairness perfor-
mances when Flow F3 becomes idle after t = 50; 000 in
the setting of Scenario (a). The results are given in Ta-
ble 2. We can see from the table, our algorithm achieves
a total throughput of 200% during the time period of
[50000; 100000]; which reaches the optimal fair spatial
reuse. In this case, we can easily verify that maximal sys-
tem throughput (even without the fairness constraint) is also
200%. The criteria of fairness and maximal throughput are
not in conflict for this scenario.

(c) Now, we change packet arrivals: Flows F0; F1; F4 are
Poisson, Flows F2; F5; F6 are MMPP, and Flow F3 is con-
stant rate. We set the source parameters such that all have an
average arrival rate of 0:23: From the results shown in Ta-
ble 3, we can see that these seven flows achieve long-term
and short-term fairness and throughput guarantees. Since
MMPP traffic is more bursty, the maximum packet delay
of MMPP sources, as well as average delay, is higher than
other sources.

(d) In the setting of Scenario (c), we further simulate
the distributed implementation algorithm, and the results
are given in Table 4. We can see that the throughput de-
creases slightly to 155% (from 161%), and the average de-
lay of flows has increased in the distributed implementation.

Example 2 In this example, we further test the fairness
property as well as spatial reuse efficiency of our algorithm
in the scenario shown in Figures 7 and 8. In Figure 7, flows
F1; F3; F8 are MMPP sources, and other six flows are Pois-
son sources; all of them have an average arrival rate of 0.3.
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Figure 6. Performance of
adaptive coloring algorithm

Flow Wl Ws

0 33333 67
1 33333 66
2 33334 67
3 33333 67
4 33334 66
5 33333 66
6 33333 66

Table 1. Ex. 1:
Scenario (a)

Flow Wl(1) Wl(2) Ws

0 16667 16667 67
1 16667 16667 66
2 16666 16666 67
3 16667 - -
4 16666 16666 66
5 16666 16667 66
6 16667 16667 66

Table 2. Ex. 1: Sce-
nario (b)

All flows are backlogged until t = 50000; then flows F3 and
F6 become idle until t = 100000: The throughput, fairness
and delay results are given in Table 5. In this scenario, if all
flows are backlogged (see Figure 7), the maximal through-
put under fairness constraint is 300%; after flows F3 and F6
become idle, the maximal throughput under fairness con-
straint actually increases to 350%. However, since the total
arrival rates for the rest seven flows are only 210%, these
flows cannot use up the extra capacity. This illustrates the
importance of adaptive flows in the ad hoc scenario. Ide-
ally, flows should be adaptive such that they can adjust
their transmission rates depending upon network bandwidth
availability.

Example 3 In this example, we test a more involved sce-
nario, in which we have 17 flows in the graph (shown in
Figure 9). The 17 flows have different weights and Pois-
son arrival rates (shown in Table 6). The long-term and
short-term throughput and fairness, average delay and its
standard deviation, and maximum delay using the idealized
algorithm of Section 4 are shown in Table 6. We can see
that all flows receive their services close to their weighted
fair shares (the randomness in the packet arrivals contributes
to the deviation) in both short term and long term. In this
case, the actual channel utilization is 313% of the physical
channel capacity.

Flow Wl Ws Davg Dmax �D
0 23029 44 0.2 16 0.95
1 23021 46 3.4 26 3.26
2 23041 43 38.1 220 37.6
3 22994 47 0.02 8 0.21
4 23025 46 2.3 38 3.89
5 23022 45 33.5 218 37.8
6 23018 48 38.5 221 37.4

Table 3. Example 1: Scenario (c)



Flow Wl Ws Davg Dmax �D
0 21743 41 1.2 23 2.5
1 21732 43 5.8 42 34
2 22568 40 55 230 42
3 21641 42 1.3 19 7
4 21845 41 5.4 41 12
5 22548 42 50 229 38
6 22566 40 48 233 41

Table 4. Ex.1: Distributed implementation
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Figure 7. Flow
graph of Example
2: all backlogged.
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Figure 8. Flow
graph of Example
2: F3; F6 are idle.

In the same setting, we also give the results using the
distributed implementation in Table 7. Again the system
throughput decreases slightly to 300% (compared to 313%),
each flow receives service approximately in proportional to
its flow weight, and the average packet delay has increased
compared to the ideal centralized algorithm.

In Figures 10, 11 and 12, we also show the convergence
feature of our adaptive coloring algorithm. In the case of
infinite packet arrivals for all flows, it takes less than 10
time units to reach a stable sets of 4 as shown in Figure
10; if the flows have Poisson packet arrivals, it takes about
75 time units to finally reach the total sets of 4 using the
idealized algorithm of Section 4. This shows that more ag-
gressive packet arrivals provide more opportunities for the
adaptive algorithm to converge. In Figure 12, we also show
that the distributed implementation of the adaptive color-
ing algorithm performs similar to the infinite arrivals even
for Poisson sources. The reason is that in the distributed
implementation, the flows will not update their status im-
mediately when a backlogged flow becomes idle; this helps
the adaptive coloring algorithm to converge.

Flow Wl Ws Davg W 0

l
Ws Davg

0 15014 62 4.8 15017 59 1.4
1 14926 57 13.5 14931 60 4
2 15013 60 3.7 15025 62 0.44
3 14922 55 11.5 - - -
4 15009 59 7.9 15027 59 1.44
5 15011 58 5.0 15019 59 1.44
6 15019 62 5.2 - - -
7 15014 64 3.6 15022 63 0.44
8 14927 59 12.5 14963 61 4

Table 5. Performance of Example 2: Left part:
all backlogged; Right part: F3; F6 idle
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Figure 9. Flow
graph of Ex. 3
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Figure 10. Ex. 3:
Infinite arrivals

Flow rf arrival rates Wl Ws Davg Dmax �D
0 3 0.39 39174 78 0.8 22 1.5
1 1 0.13 13051 25 1.7 24 1.8
2 1 0.13 13046 26 2.7 32 2.9
3 1 0.13 13053 29 0.7 16 0.9
4 2 0.26 26123 56 1.0 29 1.4
5 1 0.13 13049 24 2.9 38 3.4
6 1 0.13 13051 26 1.6 28 1.7
7 2 0.26 26126 55 0.8 18 1.3
8 1 0.13 13044 28 3.9 37 3.7
9 1 0.13 13045 29 0.8 16 1.0
10 1 0.13 13048 23 1.3 21 1.4
11 1 0.13 13039 25 2.2 25 2.6
12 2 0.26 26129 53 1.1 31 2.6
13 1 0.13 13042 26 3.2 36 3.6
14 1 0.13 13040 24 0.8 29 0.9
15 1 0.13 13044 24 1.2 30 1.7
16 3 0.39 39173 76 0.5 12 0.8

Table 6. Performance of the Idealized Algo-
rithm in Example 3: 17 Poisson flows

7. Related Work

Fair packet scheduling has been the subject of intensive
study in the networking literature and numerous algorithms
have been proposed since the weighted fair queueing algo-
rithm was first presented in [1],[2]. In recent years, there are
several research efforts on adapting fair queueing to wire-
less cellular networks in order to handle location-dependent
channel errors [3], [4].

While wireline fair queueing and wireless fair queueing
in packet cellular networks have been actively researched,
fair queueing in a shared-medium ad hoc network is a rela-
tively unchartered territory. In ad hoc networks, providing
minimum throughput guarantees and bounded delay access
has been studied at the MAC layer [7, 9]. A popular ap-
proach has been to establish transmission schedules and al-
locate stations to different time slots of a TDMA cycle in a
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Figure 11. Example
3: idealized algo-
rithm
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Figure 12. Example
3: distributed im-
plementation



Flow rf arrival rates Wl Ws Davg Dmax �D
0 3 0.39 38708 75 8.2 51 7.5
1 1 0.13 12264 23 8.9 41 7.3
2 1 0.13 12326 23 8.8 44 7.2
3 1 0.13 12010 22 7.5 41 7.4
4 2 0.26 25403 50 7.6 45 7.0
5 1 0.13 12324 24 9.3 45 7.8
6 1 0.13 12205 21 7.8 42 6.4
7 2 0.26 25630 49 9.0 51 7.7
8 1 0.13 12461 23 10.2 41 7.9
9 1 0.13 12002 22 7.4 42 7.2

10 1 0.13 12105 24 8.3 46 7.8
11 1 0.13 12382 22 9.5 41 7.5
12 2 0.26 25625 52 8.8 47 7.5
13 1 0.13 12269 21 8.7 42 7.1
14 1 0.13 11901 23 6.8 39 6.9
15 1 0.13 12186 24 8.3 44 7.3
16 3 0.39 38509 74 6.9 51 7.2

Table 7. Performance of Example 3: 17 Pois-
son flows, Distributed implementation

way that no collisions occur. The design goal is to design
conflict-free link scheduling schemes that seek to maximize
the spatial reuse of the bandwidth and remain immune to
topological changes in a mobile ad hoc networking envi-
ronment. Another study [8] also investigates the fair link
activation problem in such a network. However, all these
previous studies seek to provide throughput guarantees or
weighted fairness for wireless links, not for packet flows;
hence, they do not address the problem of fair scheduling of
packet flows. Besides, the focus of these MAC-layer studies
has been on the mechanisms of channel access by assuming
that the packet scheduling algorithm has been worked out,
rather than the other way around.

Another recent work [13] also addresses the problem of
packet scheduling in multihip wireless networks. However,
the focus there is to resolve the conflicts between fairness
and maximal channel utilization, and the solution proposed
does not provide fair service to each flow. When we pre-
pare the camera-ready version of this paper, we are aware
of another independent work of [12], which also seeks to
address the issue of fair queueing in multihop wireless net-
works. However, the authors have not addressed the issue
of maximizing spatial reuse subject to fairness constraint.
Besides, both the design and the implementation are signif-
icantly different from ours.

8. Conclusion

Fair queueing in a shared-medium ad hoc network is an
important emerging area of wireless networking research,
because simple best-effort scheduling of flows is inadequate
in scarce and heavily loaded wireless medium. In this work,
we formulate the problem and propose an initial solution.
While our proposed solution addresses the problem to cer-
tain extent and the results obtained so far are quite encour-
aging, we readily admit that many issues such as user mo-
bility and interaction with the underlying MAC protocol are
not fully or explicitly addressed in the current work. We ex-
pect to explore these issues in the future work.

References

[1] A. Demers, S. Keshav and S. Shenker, “Analysis and
simulation of a fair queueing algorithm,” ACM SIG-
COMM’89, August 1989.

[2] A. Parekh, “A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks,” PhD
Thesis, MIT Laboratory for Information and Decision
Systems, Technical Report LIDS-TR-2089, 1992.

[3] S. Lu, V. Bharghavan and R. Srikant, “Fair scheduling
in wireless packet networks,” IEEE Trans. Networking,
August 1999.

[4] T.S. Ng, I. Stoica and H. Zhang, “Packet fair queue-
ing algorithms for wireless networks with location-
dependent errors,” IEEE INFOCOM’98, March 1998.

[5] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang,
“MACAW: A medium access protocol for wireless
LANs,” ACM SIGCOMM’94, 1994.

[6] “IEEE 802.11 Standard Specification,” 1997.

[7] Z. Tang and J.J. Garacia-Luna-Aceves, “A protocol for
topology-dependent transmission scheduling in wire-
less networks,” WCNC’99, September 1999.

[8] I. Chlamtac and A. Lerner, “Fair algorithms for maxi-
mal link activation in multihop radio networks,” IEEE
Trans. Communications, 35(7), July 1987.

[9] J. Ju and V.O.K. Li, “An optimal topology-transparent
scheduling method in multihop packet radio networks,”
IEEE Trans. Networking, 6(3), June 1998.

[10] D. Welsh and M. Powell, “An upper bound to the chro-
matic number of a graph and its application to time-
talbling problems,” Computer Journal, Vol. 10, No. 1.

[11] M.V. Marathe, A. Panconesi, and L. Risinger Jr., “An
experimental study of a simple distributed edge color-
ing algorithm,” 1999.

[12] N. H. Vaidya, P. Bahl and S. Gupta, “Distributed
fair scheduling in a wireless LAN,” MOBICOM’2000,
2000.

[13] H. Luo, S. Lu and V. Bharghavan, “A new model for
packet scheduling in multihop wireless networks,” MO-
BICOM’2000, 2000.

[14] H. Luo and S. Lu, “Fair queueing in ad hoc wireless
networks,” Technical Report, UCLA, Januarary 2000.


