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Abstract—In this paper, we present a new transport protocol
TSMP, which seeks to support data transfer for the emerging
usage paradigm of ”single user, multiple devices” in a TCP
compatible manner. Through its novel naming and proxy-based
designs, TSMP is able to retain the current client and server
protocol operations of the legacy TCP protocol and TCP-based
applications while placing new functions at the proxy. Our
evaluation has confirmed its viability.
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I. INTRODUCTION

In this work, we seek to design protocol solutions for an
emerging usage scenario of ”single user, multiple devices.”
In recent years, it has become increasingly popular that a
user owns several devices with networking capabilities. A
survey of the percentage of American adults who own each
device [1] shows that several tens percentage of American
adults have more than one devices, in which 35% of adults
own a smartphone, 59% of adults own a desktop and more
than about one in two adults own a laptop. Therefore,
an example scenario may become common: a user has a
laptop in the office, a desktop at home, while carrying an
iPhone or iPad wherever (s)he goes. This emerging single-
user, multiple-device setting calls for new innovations in
networking protocol design to make it more efficient.

To this end, we describe a novel solution, called TCP
Service Migration Protocol (TSMP), that supports ”single-
user, multi-device” TCP communications. TCP has been the
dominant transport protocol for most Internet applications,
and many popular applications such as web-based video
streaming, and Instant messaging (e.g., MSN) are based
on its operation. There are two main design challenges.
First, the protocol operations should support TCP-based data
transfer among multiple devices of the same user. TCP
sessions should be able to seamlessly migrate among the
devices owned by the same user. For example, a user does
instant messaging or video streaming on his laptop when
he is in his office. When he walks out for lunch, he can
proceed the ongoing messaging or video session via his
iPhone or iPad. Second, users are able to continue to run
legacy TCP and applications with minimal changes at both
sides of the client and the server while supporting the notion

of single-user, multiple-device in data communications. This
will enable reuse of most existing Internet applications.
Existing protocols can achieve one of these two goals, but
not both.

In this paper, we describe a novel solution, called TCP
Service Migration Protocol (TSMP), that supports ”single-
user, multi-device” TCP communications. The TCP con-
nection is associated with the user and can seamlessly
migrate among the devices belonging to the same user. A
key innovation in TSMP is the proxy bridging the client
and the server in the existing client-server communication
model. The proxy offers two critical services of naming and
TCP control/data plane functions. By carefully designing
the proxy, TSMP is able to reuse existing TCP and TCP-
based applications at both the client and the server without
modifications. Our initial evaluation has confirmed the ef-
fectiveness of TSMP design.

The rest of the paper is organized as follows. Section
II illustrates the usage scenario and identifies the design
requirements. Section III describes the related work, and
Section IV presents the architecture and TCP control/data-
plane solution. Sections V elaborates on the naming manage-
ment. Section VI evaluates TSMP and Section VII concludes
the paper.

II. SINGLE USER MULTIPLE DEVICES

In this section, we first present an example of our intended
scenarios and then identify the requirements for our design.
We also discuss the applications of our protocol.

A. An Example Scenario

As shown in Figure 1, Bob has three networked devices:
PC at home, Laptop in the office, and Smartphone, which
he uses while moving. He chats with his friend, Alice, over
an instant messaging (IM) application using his smartphone
while he is on his way home. In the mean time, Alice wants
to share video clips with Bob using HTTP streaming from
her web server at her PC. After arriving at home, he switches
both the IM session and the HTTP progressive downloading
of the remaining videos to his home PC because of its
comfortability and larger bandwidth. Then, Bob chats with
Alice and watch the latter part of the video on his PC.



Moreover, the service migration among Bob’s devices is not
perceived by Alice.

Our goal is to design a solution that supports data service
migration for one’s multiple devices, so that each user can
use the most appropriate device for each different situation.

B. System Issues

In our system, we consider data service migration based
on the TCP protocol, and thus need to address the issues of
migrating a TCP connection among two devices in addition
to the single-user, multiple-device naming issues. First, how
to keep the intended connection open during migration and
prevent the end which is not involved from perceiving the
migration? Second, how to transfer TCP connection states
from one device to another and make the overhead to
cause as less impact as possible on the connection? There
may be some transient loss during migration, which may
result in shrinking the congestion threshold (Congestion-
Threshold) or interrupting the connection. The too small
value of CongestionThreshold would prevent the congestion
window (CongestionWindow) from growing quickly to the
appropriate size and a large amount of delay may thus occur.
Third, most current naming schemes do not support the
feature that one user owns multiple devices. Forth, the IP
address has the decoupling roles, particularly as the identifier
(ID) and as the locator. The ID of an end device, which is
for long-term usage, should not change frequently with the
locator which is transient due to mobility.

C. System Requirements

We have several requirements for our system to address
the above issues in the following three aspects.

1) Service Migration: To support service migration, the
system needs to consider both control-plane and data-plane.
The control plane is used to coordinate the operation of
service migration, which includes triggering the migration
process, discovering the device to which the service is
migrated and inform the new device to accept the migration.
During service migration, the data plane should be able
to cache the transient packets which have been sent by
the sender but have not been acknowledged, and make
these packets as few as possible to reduce the overhead.
After the migration is complete, it will send all the cached
packets to the new receiver and then resume the original
TCP connection. Its another important task is to avoid
retransmission timeout to keep the same value of Con-
gestionThreshold. Service migration may happen from one
device with low bandwidth to another with high bandwidth
or from the latter to the former. In the former case, we need
to make the CongestionThreshold value as large as possible
so that the sender’s CongestionWindow can grow quickly
with the slow start algorithm, to the appropriate size for the
larger bandwidth. If the CongestionThreshold value becomes
too small, the size of CongestionWindow would increase
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Figure 1. Service is migrated from Bob’s phone to his PC.

very slowly because it grows linearly with the additive
increase/multiplicative decrease (AIMD) after it exceeds
the threshold. However, the CongestionThreshold cannot in-
crease without data transmission so that the best way we can
do is to maintain the same value of CongestionThreshold. As
for the latter case, the CongestionWindow can shrink quickly
to the appropriate size due to the multiplicative decrease.

2) Naming: The namespace should support both the user
ID (UID) and the device ID (DID), and be able to map
each UID to multiple DIDs. To prevent ID from transiently
changing with the locator, the roles of IP address need to be
decoupled and a mapping layer should be provided to map
each DID to its current IP address which plays the role of
only the locator.

3) Backward Compatibility: In order to have good back-
ward compatibility and easy deployment, our solution should
be designed with the least modifications possible on the
existing systems and applications.

D. Applications

We aim to apply our TSMP protocol to the applications
which are based on the TCP protocol. They include two
popular types of applications: HTTP video streaming and
IM applications. Apple’s HTTP Live Streaming [2] is based
on the former and Flash Video [3] also supports this video
streaming feature. Moreover, many notable users of Flash
Video include Youtube, Google, Yahoo and so on. The latter
are the applications for real-time text-based communication,
such as Skype and Window Messenger. Our solution seeks
to bypass the modification of them for easy deployment.

III. RELATED WORK

In this section, we present the solutions which have been
proposed to deal with the migration of TCP connections
and the signaling protocols which are used for controlling
communication sessions. We also introduce other naming
schemes, which are based on the Identity/Locator split.

A. TCP Migration

In order to support the migration of TCP connections for
satisfying various mobility scenarios, a number of solutions
have been proposed. They can be classified into two cat-
egories: split connection [4]–[7] and non-split connection



[8]–[11] approaches. Our proxy-based solution falls into the
former. All these schemes cannot achieve both of our two
goals: no requirements of modifying both applications and
the TCP protocol, and enabling a TCP connection migrating
between two devices.

The split connection approaches always divide a TCP
connection into two sub-connections by inserting a proxy
or module into the communication path between two ends.
MSOCKS [4] builds its transport layer mobility architecture
around a proxy, which enables mobile nodes to migrate data
streams between network interfaces or different networks.
The way in our solution that the proxy mediates between
two sub-connections is similar to this scheme, but both its
objective and method of migrating connections are different
from ours. A MSOCK socket library sitting between the
application layer and the kernel socket is introduced to allow
applications to operate on this architecture. Although the
applications do not need to be modified, they have to be
recompiled with the MSOCK library. I-TCP [6][7] aims to
deal with handoff for mobile devices by breaking a TCP
connection into two parts, one for the wireless link and
the other for the wired link. TCP snoop [5] uses the same
way to improve TCP performance in wireless networks.
The former employs a new transport protocol with mobility
and wireless awareness on the sub-connections in wireless
networks, whereas the latter performs local retransmissions
based on a few policies dealing with acknowledgements and
timeouts.

The schemes in the direction of the non-split connection
either modify the existing TCP implementations or intro-
duce a shim layer between the application and the TCP
protocol stack. TCP Migrate [8] maintains an established
TCP connection while a mobile host’s IP address changes
by introducing a new Migrate option into the TCP protocol.
An open TCP connection can accordingly be temporarily
suspended and be reactivated later from another IP ad-
dress using a special Migrate SYN packet. Migratory TCP
[9] supports the migration of a TCP connection, between
servers, for service continuity and availability in case of
failures. MSL [10] introduces a shim layer, Mobile Socket
Layer, which enhances the existing socket implementations
to support uninterrupted TCP associations on the devices
moving among different networks. It mediates between the
application layer and the TCP/IP protocol stack. During
mobility, the broken TCP connections are hidden from
applications and then reset when mobile hosts move to a
new location. SockMi [11] migrates TCP connections by
transferring socket states and in-flight data between different
devices. A SockMi module placed under the application
layer is introduced to coordinate the socket migration, and
devices communicate with each other through their SockMid
daemons. With these two schemes, applications need to be
modified based on their new APIs.

B. Signaling Protocol

The Session Initiation Protocol (SIP) [12] is a widely-
adopted signaling protocol for controlling communication
sessions, and its applications include video streaming, instant
messaging, and file transfer. With its re-INVITE message,
users can modify an ongoing session by attaching a new
session description. The modification can involve changing
addresses or ports, adding or deleting a media stream, and so
on. For seamless migration, SIP only works for the sessions
which consist of stateless connections, such as UDP-based
RTP connections for some video streaming applications,
because TCP connections still need to be interrupted and
then reestablished after their addresses change if they are
migrated among different devices. However, it can be the
reference for our SMP signaling design.

C. Naming Support

The naming scheme of our TSMP protocol is based on
the Identity/Locator split architecture which a large amount
of researchers use to address mobility issues.

A number of protocols [13]–[18] are designed to support
mobility using Service ID (SID), UID or DID above the
transport layer. C2DM [13] and APNS [14] are currently the
two most popular solutions, which are developed by Google
and Apple respectively. C2DM identifies users using Google
user accounts of which each device should include at least
one, whereas APNS identifies devices with opaque device
tokens. Both of their purposes are to help the third-party
application servers forward small messages or notifications
to mobile devices. They cannot associate a user to multiple
devices with considering either only UID or only DID.
INS [17] and DONA [18] provide service-oriented mobility
so that each service is assigned a SID and the location
it resides can be resolved over their constructed overlay
networks. However, they are unable to bind multiple devices
to single user. Haggle [15] and SBone [16] present the
concept of identifying both users and devices, which can
satisfy the naming requirements of our single-user, multi-
device scenario. The former’s goal is to deal with mobility
issues, whereas the latter’s is to provide device sharing
among people. They are different from our goal which seeks
to enable the migration of ongoing service.

Some schemes [19]–[22] introduce DID to replace the
identifier role of IP address and make transport protocols
bind to it instead of IP address. An ongoing session of the
transport layer would not be interrupted as the IP address
of either end changes. Their drawback is that the transport
protocols need to be modified. Among these schemes, only
UIA’s naming scheme [21] can fit in with our intended
scenario. It presents a personal namespace, which includes
the identities of both users and devices, to organize the user’s
social network and manage devices.
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Figure 2. SMP architecture.

IV. TCP SERVICE MIGRATION PROTOCOL (TSMP)

In this section, we first present the SMP architecture.
Then, we describe our proxy-based solution for TCP migra-
tion and illustrate its complete procedure with an example.

A. Architecture

We employ a proxy-based solution to achieve TCP service
migration. As shown in Figure 2, the SMP architecture is
composed of three major components: SMP Proxy (SMPP),
SMP Server (SMPS) and SMP Application (SMPA). SMPP
is interposed between client and server to relay packets from
either end to the other and mediate the sub-connections of
each TCP connection. In order to bypass the modification
of the existing systems and applications, it collaborates
with SMPS and SMPA to support the service migration
process. SMPA provides an interface for users to make
use of the TSMP service and a channel for SMPP to
interact with the applications at devices. Each device has an
installed SMPA which maintains a namespace group for its
owner. The namespace group allows users to manage their
own devices and contact others conveniently. SMPS takes
care of the global namespace and provides the service of
DNS-like name resolution. For namespace consistency and
mobility support, there are some functions of namespace
management, which are provided for SMPS and SMPA.

B. Proxy-based Solution

SMPP consists of two planes, control plane and data
plane. The former coordinates the service migration process,
whereas the latter forwards packets between two ends and
emulates as a TCP sender to set up a new sub-connection
to the new receiver when TCP migration is requested.

1) Control Plane: The control plane coordinates the
operation of service migration using two control messages:
Migration From Request (MFR) and Migration To Request
(MTR). MFR is always sent by SMPA to request SMPP

to migrate a TCP connection from the device, where it
resides, to another. It should include both the identity of
the intended device and the information of the migrated
connection so that SMPP can resolve the device’s IP address
by querying SMPS and identify the connection. The other
control message, MTR, is used by SMPP to ask SMPA for
invoking its local application to set up a connection to SMPP.
Then, SMPP will hook this new sub-connection up to the
old sub-connection of the other end, and thus recover the
migrated TCP connection.

2) Data Plane: SMPP bridges between the two ends for
each TCP connection by forwarding packets from either
side to the other, so each connection is divided into two
sub-connections which are glued by a mapping table in
SMPP. The mapping entry of a connection contains an
address pair of each end, IP address and port number. When
SMPP receives packets from one end’s sub-connection, it
replaces the source and destination information with the
SMPP address and the other end’s address respectively, and
then forwards them to the other sub-connection.

For our proxy-based solution, we need to enable the TCP
applications to connect to SMPP. Most TCP applications
allow users to configure the proxy connection settings, so
it can be done by providing the SMPP information to the
intended applications. For example, both Windows Live
Messenger and Skype Messenger support the SOCKS5 [23]
and HTTPS [24] proxies, and most web applications can
operate with not only them but the HTTP proxies.

C. TCP Migration

When SMPP receives a MFR request, it will start the
migration process of the requested TCP connection. The
main concept is that it temporarily pauses the TCP flow
until the connection between the new device and SMPP is
established, and then resumes it, so the process consists of
two phases, transient pause phase and resumption phase. The
pause phase aims to freeze the sending process and cache
all the outstanding packets which have not be forwarded by
SMPP, as well as keep the value of CongestionThreshold
unchanged by preventing unnecessary congestion control
invocations at the sender. The purpose of the first two
actions is to prevent transient loss and keep the connection
open, whereas the last action seeks to decrease the overhead
of increasing CongestionWindow to the appropriate size
of the new sub-connection after the migration finishes. In
the resumption phase, SMPP emulates a TCP end to set
up a connection to the new device and flush the cached
packets to it, and then recovers the sending process. After
the connection is resumed, SMPP continues the forwarding
process and the old sub-connection is interrupted.

1) Transient Pause Phase: This phase is launched once
MFR is received by SMPP, and it does not end until the
migration is complete. It is mainly composed of three tasks:
advertising the size of the receiver’s window to be zero,



stopping to forward data packets but caching all of them,
and being in response to the zero-window probing.

In the TCP flow control mechanism [25], the receiver can
advertise its window with the size zero to stop the sender
sending data. The sender does not resume the sending until
the advertised window is larger than zero. We employ this
feature to stop the sending process by modifying the window
size of the TCP headers to be zero in the ACK packets
which are forwarded after this phase begins. SMPP should
continue to forward the ACK packets which acknowledge
the data packets it has forwarded to the old receiver before
this phase. The sender thus pauses its sending process, and
does the zero-window probing by sending at least one octet
of new data periodically. Its purpose is to attempt recovery
and guarantee that the re-opening of the window can be
reliably reported. During the migration period, SMPP should
generate and send an ACK packet, which shows the next
expected sequence number and the window size zero, in
response to each probe segment. Therefore, the sending TCP
would allow the connection to stay open and temporarily
freeze the sending process without shrinking the value of
CongestionThreshold. We can use the maximum sequence
number of the cached packets plus one to be the expected
sequence number.

Another task for this phase is to cache the transient
packets which have not been forwarded. SMPP starts to
cache data packets and stop to forward them once this phase
begins. These cached data packets have been sent out by the
sender so that the retransmission timeout will be triggered
if they are not acknowledged. SMPP accordingly needs to
generate and send their ACK packets to the sender in ad-
vance for the new receiver. These ACKs should also contain
the same information of the expected sequence number and
the window size. SMPP needs to make sure that it caches
the data segments with all the sequence numbers between
the expected sequence number and the acknowledge number
of the last ACK packet that the old receiver sends. There
may be a case that the old receiver does not acknowledge
all its received packets before it tears down the connection.
However, these packets would not be cached by SMPP
because they have been forwarded. Intuitively, SMPP can
just send ACKs to trigger retransmission at the sender and
cache them, but the side effect is that CongestionThreshold
will be reduced. We can enable SMPP to cache a certain
amount of packets to compensate this situation no matter
whether it is in the migration state. If there are still some
missing packets, relying on the retransmission would not be
avoided. We can estimate the cache size with a half of RTT
between the sender and the receiver.

2) Resumption Phase: When the new device requests
for a new connection due to its SMPA’s invocation, the
resumption phase begins. SMPP emulates a TCP end to do
three-way handshaking with the device and starts to send its
cached packets to it. As a TCP sender, SMPP maintains
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Figure 3. TCP Service Migration Procedure: Bob switches Alice’s
transmission from his Phone to his PC.

some connection states: CongestionWindow, Congestion-
Threshold, and so on. It uses the slow start mechanism when
the sending process is initialized or the connection times out,
and employs the AIMD algorithm after CongestionWindow
reaches CongestionThreshold. SMPP does not forward their
ACK packets to the sender. After all the cached packets are
acknowledged, SMPP resumes the sender’s sending process
by forwarding the new receiver’s last ACK it receives. The
transmission is thus recovered due to the last ACK with a
non-zero receive window. SMPP will return to the normal
forwarding phase, and discard the emulated TCP states. An
issue we need to consider is that the initial sequence number
which is chosen at random may result in different sequence
number systems between the old sub-connection and the
new sub-connection. For this reason, SMPP should add the
mapping information of their sequence numbers into the
mapping entry of this connection, and modify each packet’s
sequence number before forwarding it.

D. TCP Service Migration Procedure

In this section, we present the procedure of TCP service
migration using an example scenario, as shown in Figure 3.
Bob requests a video from Alice’s HTTP streaming server
using his smart phone. After he arrives at home, he wants
to switch the video transfer from his phone to his home PC.
In this figure, the dotted lines represents the actions in the
control plane whereas those in the data plane are presented
by the solid lines. DID represents the device identity, which
we will discuss in the next section.

After receiving Bob’s migration request, the SMPA at his
phone issues a MFR message with the identity of Bob’s
PC and the information of the migrated connection. The
transient pause phase is triggered in SMPP by the MFR
and the control plane resolves from SMPS the location of
Bob’s PC with its DID at the same time. Then, the control
plane sends a MTR message to the SMPA at his PC, with



the information of the Alice’s streaming server. The video
application at Bob’s PC will be invoked and requested to set
up a connection to SMPP. As soon as SMPP receives the
connection request, it launches the resumption phase and
then returns to the normal forwarding state after this phase
ends. The pause phase also ends with it.

V. NAMING AND NAMESPACE MANAGEMENT

We next introduce the design of namespace in the SMP
system and some fundamental management functions.

A. Naming Principles

The namespace is designed based on both the ID/Locator
split technology and the requirement of the single-user,
multi-device scenario. We organize it into three lay-
ers: Name, ID and Locator. They are joined with two-
dimensional (2D) mapping: Name to ID to Locator, User
ID (UID) to Device IDs (DIDs).

1) Name/ID/Locator: The SMP system maintains a
namespace group for each user, which is shown in the SM-
PAs at his/her devices. Users recognize friends and devices
using user name (UN) and device name (DN) respectively
in their namepspace groups. In each namespace group,
the names, which are changeable and human-readable, are
assigned by its owner. The UN of each friend should be
unique and the DN of each device needs to be unique in
its owner’s device set. We introduce two identities, UID
and DID, which identify user and device respectively. DID
substitutes for the identity role of IP address so that the IP
address serves as only the locator. Both of them are globally
unique and persistent. The email addresses used to register
the SMP system by users are considered as their UIDs. A
device’s DID in DNS-like dotted notation is generated by
combining its owner’s UID with the device name which is
specified by its owner. For example, Bob registers his UID
as bob@ucla.edu and the DID of his laptop, named laptop
at its registration, would be laptop.bob@ucla.edu.

2) 2D Name Resolution: Each locally unique UN or
DN is associated with a globally unique UID or DID
respectively, and each DID can be mapped to its care-of
IP address (CoA). The former mapping is maintained in
each namespace group, whereas the latter is managed in
the global namespace in SMPS. Devices can discover each
other with the peer’s DID through the SMPS’s DNS-like
name resolution service. Another dimension of mapping is
between a UID and (multi-)DID as a user may own more
than one device. It can be done by the identity itself because
each DID contains its owner’s UID.

B. Namespace Management

Each user has a namespace group in the SMPAs of his/her
devices, in which (s)he manages his/her own devices and
keeps the information of his/her friends and their devices.
SMPS manages the global namespace which includes the

information of all the namespace groups, as well as devices’
CoA and status. A namespace group is constructed by
two functions: service registration, and users and devices
introduction. Moreover, the namespace state synchronization
is introduced to keep the global namespace to be consistent
with each namespace group. Based on the global namespace,
SMPS provides name resolution and mobility management.

1) Service Registration: Each user needs to register the
SMP system with his/her email through an installed SMPA
at any of his/her devices before using TSMP service. His/her
namespace group will then be created, which initially con-
tain only the information of the device used for registration.

2) Users and Devices Introduction: In the SMP system,
users or devices can introduce with each other using two
schemes: Local Rendezvous and Centralized Coordination.
The owner(s) of two devices can connect both of them to
a common local area network such as WiFi and apply the
local rendezvous tool in SMPA, which is similar to Apple’s
Bonjour [26], to find each other. One end initializes the
introduction process and the other needs to acknowledge the
request. If both of them belong to the same owner, one of the
devices should be newly introduced and will be added into
the owner’s personal namespace. However, if their owners
are different, that is, users introduction, each user will add
the other into his/her namespace group , and assign UN and
DNs to him/her and his/her devices, respectively. The new
state of each namespace group will be updated to SMPS. The
medium used for local rendezvous is not limited to WiFi,
since Bluetooth, E-mail, SMS message can also be applied.

Two users can also introduce with each other through the
SMPS coordination. One user needs to issue a request to
SMPS through the SMPA of any his device, and in turn
this request will be sent to all of the other’s devices. As
long as s(he) confirms it on any device, each user’s personal
namespace will be inserted into the other’s namespace group.
If a user wants to introduce his/her own new device into
his personal namespace, (s)he can issue a request to the
SMP system through the device’s installed SMPA, and
assign a DN to it. The namespace groups with this personal
namespace will then be updated.

3) Namespace State Synchronization: Each SMP device
needs to maintain its status, because only the on-line devices
can be requested to accept TCP service migration. When a
device is on-line, its SMPA sends a heartbeat message to
SMPS periodically to maintain the status and synchronize
its namespace group. SMPS then replies with a message
to inform the SMPA of the status of all the devices in its
namespace group. When SMPS identifies a lack of heartbeat
messages after a time period, the device’s status would
become off-line. To reduce the overhead of namespace
synchronization, only the latest modification timestamp of
the namespace group is included in the heartbeat message.
If it is different from the corresponding timestamp in SMPS,
the SMPA will start to synchronize its namespace group with



SMPS. The fact that many modifications may happen after
the latest synchronization may result in conflicts between
SMPS and SMPA. We make SMPS and SMPA to keep all
the logs of those modifications, so they can get the updated
information by reorganizing the updates and applying them
in time order. After resolving conflicts, they update the
current time to their latest modification timestamp.

4) Name Resolution and Mobility Management: SMPP
can resolve the CoA of each DID using the name resolution
service provided by SMPS. As for mobility management,
each SMPA continually monitors the change of its device’s
CoA. When it is detected, the new CoA will be immediately
updated to SMPS by the SMPA. It also informs SMPS of
the information of the ongoing connections in which this
device is involved if there is any. Then, SMPS can notify
SMPP of changing the IP addresses of these connections’
mapping entries.

VI. EVALUATION

The primary goal of TSMP is to allow a user to get
data transmission using the most appropriate device for each
different situation. We can examine TSMP’s performance
by evaluating how much overhead it would incur in various
settings. The overhead we want to measure is the delay of
the TCP migration process which begins at the time that
MFT is issued by the receiver and ends at the time that the
receiver advertised window is reopen at the sender.

A. Experimental Setup

We evaluate TSMP using NS2 with some measured num-
bers of the processing delay of SMPS, SMPP and SMPA.
We generate TCP traffic with the FTP source and use the
module of TCP NewReno. In the topology, except for SMPP
and SMPS, there are one server, a pair of the clients which
are involved in TCP migration, and multiple pairs of senders
and receivers have TCP connections through SMPP. In each
experiment, the server sends a 0.8MB file to a client and it
always triggers the migration at the fifth second. We conduct
three different scenarios of TCP migration: from a WLAN
device to another WLAN device, from WLAN to 3G and
from 3G to WLAN. We configure the processing delay of
SMPS to be 200ms per request based on the statistics of
Twitter servers [27] which are 8 Sun X4100s with over
16GB of memcached, and serve over 350000 users, average
600 requests per second. The processing delay of each
packet in SMPP is set as 380ns, because it takes about
4000 CPU cycles to send a packet from the driver layer to
the application layer based on the settings: Quad-Core Intel
Xeon 5355 processor at 2.66GHz and Intel 10Gbps 82598
server NIC adapter [28].

The network latency between SMPP and the SMP device
is based on the measured latency between our devices and
Google server, because the SMP system may be deployed
as a nationwide service in the future. We use the Ping tool

WLAN 3G WLAN-WLAN WLAN-3G 3G-WLAN
Tx Time (s) 7.05 33.04 7.69 25.87 12.42

Table I
THE TRANSMISSION TIME FOR DIFFERENT SCENARIOS.
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Figure 4. The migration delay varies with different bandwidths and
involved networks.

to get the approximate round trip times for both 3G and
WLAN networks. The round trip time between our iPhone
and Google server is average 740ms through 3G network,
whereas that between our PC and Google server is average
38ms over WLAN. However, we assume that both SMPP
and SMPS are provided by the same provider so that the
network latency between them could be very small and
the bandwidth is very large. They are thus set as 1ms and
10Gbps, respectively. The bandwidth of SMPP is 1Gbps and
that between each device and SMPP is 1Mbps if they are not
specified. However, we do not consider the delay of invoking
an application by SMPA, because it may vary dramatically
with different applications and platforms.

B. The Migration Overhead

We examine the delay of TCP migration by varying
the bandwidth between SMPP and the SMP devices which
are involved in the migration. The number of concurrent
sessions at SMPP is set to 100. As shown in Figure 4,
the WLAN-3G scenario results in the higher delay than the
others do. It is because the 3G network has longer round
trip time, and some packets need to be exchanged upon
it to initialize the new TCP subconnection and resume the
sending process. Both the TCP three-way handshaking and
flushing the cached packets of SMPP to the new receiver
incur the major proportion of the overhead. It needs at most
about 5 seconds when the bandwidth is higher than 200
Kbps. However, the WLAN-WLAN has the lowest overhead
due to its low network latency. We can also understand that
the network latency dominates the overhead, compared with
the bandwidth. Table I shows the transmission time that is
needed for each scenario to send a 0.8MB file. Even if there
is some overhead of the migration, it is worth for the 3G-
WLAN scenario which saves more than 20 second in the
transmission. This is the major scenario of TCP migration,
which can benefit people. As for the convenience of mobility,
people need to sacrifice some performance with the WLAN-
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Figure 5. The migration delay varies with the traffic loads at SMPP.

3G scenario.

C. The Migration Overhead in the Scaling Scenarios

We conduct the scaling scenarios by varying the number
of concurrent TCP connections from 10 to 1000 at SMPP.
Figure 5 shows that the WLAN-3G scenario still gets the
longest delay, whereas the WLAN-WLAN has the shortest.
There is a minimum migration delay due to the network
latency. This delay increases with the traffic loads of SMPP.
Therefore, the processing power of SMPP also has an impact
on the migration performance. We can adjust it based on the
loads of SMPP to guarantee the migration delay to be below
a certain number of seconds.

VII. CONCLUSION

We are entering the post-PC era with the proliferation of
various portable devices owned by a user. How to adapt net-
work protocols to such ”single-user, multi-device” scenarios
becomes a new challenge. The goal is to allow for users
to communicate with others anytime, anywhere, and from
any device and reuse existing applications and protocols as
much as we can. In this paper, we have described our initial
effort along this direction. The main feature of TSMP is
to place most new functions at the proxy middlebox, while
imposing no changes on both TCP sides of the client and
the server. With TSMP, users are able to either save the
transmission time of their files or have the convenience of
mobility without interrupting ongoing TCP sessions.
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