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Abstract—With the power consumption issue of mobile handset resource blockgRBs). In order to achieve large gain from
taken into account, Single-carrier FDMA (SC-FDMA) has been multiuser frequency diversity, a scheduler needs to knaav th
selected for 3GPP Long-Term Evolution (LTE) uplink multipl € jngtantaneous radio channel conditions across all userslan

access scheme. Like in OFDMA downlink, it enables multiple RB hich fed . t for the f d in adanti
users to be served simultaneously in uplink as well. Howeveits S, Which are ted as inputfor the irequency-domain adaptv

single carrier property requires that all the subcarriers allocated ~User-to-RB allocation. For example, in LTE UL each user
to a single user must becontiguous in frequency within each time  transmits a Sounding Reference Signal (SRS) to the scimeduli
slot. This contiguous allocation constraint limits the scleduling node (i.e. base station) [1], which is useddsnnel quality
flexibility, and frequency-domain packet scheduling algothms gicator (CQI). With CQIs across all users and all RBs, a base

in such system need to incorporate this constraint while tring . - .
to maximize their own scheduling objectives. station performs RB-to-user assignment at each time slgt (e

In this paper we explore this fundamental problem of LTE in LTE every 1ms) according to the selected scheduling polic
SC-FDMA uplink scheduling by adopting the conventional time- Thus, in the time-frequency domain, an RB is considered as

domain Proportional Fair algorithm to maximize its objective a minimum scheduling resolution, and also a minimum unit

(i.e. proportional fair criteria) in the frequency-domain setting. _ i ; i ;
We show the NP-hardness of the frequency-domain scheduling (()'I\It\?g)d\%& r:tgrgii?;ﬁiygfhg: ep t;\(l%mg?nuela“on and coding

problem under this contiguous allocation constraint and pesent g
a set of practical algorithms fine tuned to this problem. We  Most of the DL FDPS algorithms proposed so far adopt
demonstrate that competitive performance can be achievedni the well-known time-domaifroportional Fair (PF) algorithm

terms of system throughput as well as fairmess perspectiveshich  as a basic scheduling principle and apply the PF algorithm
is evaluated using 3GPP LTE system model simulations. directly over each RB one-by-one independently. However,
such scheduling strategies cannot be employed in the UL SC-
FDMA. Due to its single carrier property, SC-FDMA requires
In recent years Orthogonal Frequency Division Multipl¢hat all the RBs allocated to a single user mustbatiguous
Access (OFDMA) has been considered as a strong candidiatérequency within each time slot (i.e. sub-frame) [5],.[6]
for the broadband air interface for its robustness to matkip Thus, LTE UL FDPS algorithms should respect this constraint
fading, higher spectral efficiency and bandwidth scalghili while trying to maximize their own scheduling objectives.
and it has been selected for 3GPP Long-Term Evolution (LTE) In this paper we study this fundamental problem of UL
downlink (DL) radio access technology. However, one majdrequency-domain packet scheduling under contiguous RB
disadvantage of OFDMA is that the instantaneous transthittallocation constraint. We analyze this problem by adopting
RF power can vary dramatically within a single OFDMhe widely employed PF algorithm to maximize its objective
symbol. Such an undesirable high peak-to-average power rgi.e. proportional fair criteria) in the frequency-domaitting.
(PAPR) is a serious concern for the uplink (UL), since powéthe main goal of this paper is to investigate how to adapt the
consumption is a key consideration for the mobile handsetisne-domain PF algorithm to this problem framework.
As a result of seeking an alternative to OFDMA, Single-
carrier FDMA (SC-FDMA) has been selected for LTE uplinid- The Model
multiple access scheme. While keeping most of the advasitageWe consider a cellular network whose UL system bandwidth
of OFDMA (e.g. the same degree of multipath protection), SG divided intorn RBs, and we have a single base station and
FDMA has significantly lower PAPR, since the underlying: active wireless users. The base station can allocafeBs
waveform is essentially single-carrier. Thus, lower PAPR d@o a set ofn users. At each time slot multiple RBs (with the
SC-FDMA greatly benefits the mobile terminal in terms ofontiguity constraint) can be assigned to a single usel eac
transmit power efficiency. RB however can be assigned to at most one user. In this paper
As in DL OFDMA, multiple access in UL SC-FDMA we shall work in aninfinitely backloggednodel in which for
is achieved by assigning different frequency portions @& tteach user there is always data available for service. Thas, t
system bandwidth to individual users based on their chanmelse station can schedule all theRBs every time slot.
conditions. Such simultaneous frequency-domain mukliplp We define the indicator variable(t) to indicate whether
of users (inherently in concert with time-domain schedg)lin or not RB ¢ is assigned to user at time slott. We assume
is performed byfrequency domain packet scheduli(fgPPS). that channel conditions vary across RBs as well as users.
In LTE UL, the system bandwidth is divided into multipleThe channel conditions typically depends on the channel
subbands (i.e. groups of subcarriers) denotedphgsical frequency, so they may be different for different channels;

I. INTRODUCTION
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moreover, they also depends on the user location and the tim%ame‘f’o configuous ‘eairement carrior O SuOUS Tequirement

slot. Therefore, each RB haser-dependergndtime-varying ”SeA “SeA

channel condition. We usgf(t) to denote the instantaneous 2| 716/5/4(3]45) 6] 7 8704314151 O
channel rate for useron RB ¢ at timet¢. This channel rates 118118 218 3182 7] 1 B11/8 11582838271
are estimated from the CQIs extracted from the UL channel ©| 66L& 5/5/6| 4/ 4/6/6|5| C|6/6/6/5]5/6/4]4) 6|65
sounding. Thus, if:¢(t) = 1, then user can transmit data of ~ ©|3| 4|5/ 6L 894 8[746/5 D[3]/4]56[7A3 815
sizer¢(t) on RB ¢ at time slott. dEic BECEBEE-E & : EEEEEEEE

B. Problem Formulation Fig. 1 Maximizing the PF objective. The numbers denote the PF

In the time-domain context, the well known Proportionanetric values\;. Dark-colored RBs represent assignment strategies
Fair (PF) algorithm aims to maximize, over all feasible maximizing the objective with/without the contiguity caresnt.
scheduling rules, the utility functiod, log R;, whereR; is
the long-term service rate of usérThis objective is known
as proportional fair criteria. Maximizing }_, log R; not only
improves overall throughput but also prevents any user fro
being completely starved sindeg0 = —oo. In order to PF
maximize) , log R;, we should serve the user who maximizevcvOr
r;(t)/R;(t) at each time slot (proven in [7], [17], [22]). Note
that the PF algorithm achieves high throughput and maista
proportional fairness among all users by giving priority tQi
users with a high-quality channel rate(¢)) and a low current
average service rate((t)).

We now adapt this time-domain PF metric to the frequenc
domain setting with the utility functior,log R; as our

which enforces the contiguous RB allocation. Now we need
to optimize the objective (1) with keeping to those constiai
i.e. choose the value$(t) to maximize the PF objective
). One crucial difference is that we now cannot apply the
algorithm on each RB one-by-one in isolation. In other
ds, the isolated local optimization of each RB hardly
optimizes the objective (1). Figure 1 exemplifies the case.
ith the contiguity constraint we may need to serve users
th suboptimal PF metric valug$ for some RBs so as to
optimize the PF objective (1).

Seeking to maximize the PF objective (1) under this contigu-
?ﬁ/ constraint, we present five variations of PF-FDPS atbaoni
S . . : (Alg1 throughAlg5). In this paper we explore the fundamental
objective. LetA(t) = ri(t)/Ri(t) be the PF metric value nature of this scheduling problem by investigating how well

that useri has on RBe at time slott. As justified in [10], we ; . L
can establish a FDPS version of PF objective function whéar?Ch of these five algorithms fits into the problem framework.

scheduling time slot as follows: C. Related Work
maxzzxf(t)/\f(t) 1) The Proportional Fair (_PF)_ algorithm was introdu(_:ed by
— = [15], [22], extensively studied in the research communéty (

h(ilﬁlay [9], [18], instability [7], [8]), and it is widely useds
which maximizesy™, z;(t) - ;(t)/Ri(t) in the time-domain a_standard scheduling algorithm in the current singlei@arr
setting. Hence, o%ztimiz(ing th(e){)bje(zc)tive (1) makes the- utiereIess systems such as CD_MA .2000 IXEV-DO [11], [15]'.
ity function ), log R; maximized in the frequency-domain _The area of FDP_S schedu_llng IS new, and_most of studies
setting. For this reason, most of the proposed DL FDlg:’eCtl.y adapt the time-domain PF algorithm into frequency
scheduling algorithms apply the PF algorithm directly ov omain context. Their results shovy the potential gains Of up
each RB one-by-one, i.e. for RBthe PF algorithm selects thel© 40'_60% average system capacity improvement over time-
best user who maximizes(t)/R;(t) at time slott. However, domain only scheduling [19], and moreover [24] shows that
for LTE UL we need to add the contiguous RB constraint int.[pe frequency selectivity 01_‘ FDPS indeed helps signifigantl
this objective (1) due to the physical layer requirement@fs'mprove the short-term fairness. Andrews et al. [10] have

FDMA. Accordingly, we can rewrite the objective (1) moréaa%poseddthﬁ FDPS-version MaxWeigrtalgogthnwld gnd ’
precisely as the following optimization problem: addressed the resource wastage problem induced by small-

gueue condition in DL FDPS context. The objective of the
cye MaxWeight algorithm is the system stability, and the aushor
maXXi: ;Il Al @) have presented the performance from the queue perspective.
Cohen et al. [13] recently studied the DL OFDMA schedul-
ing problem somewhat related to this contiguous allocation
requirement in WIMAX. They present several heuristic al-
Z x5 <m (3) gorithms for constructing the OFDMA frame matrix as a
i c collection of rectangles which fit into a single matrix. The
b algorithms, however, assume that 1) at each time slot the bas
fo =b—a+1, Viaz!= a:f =1 (4) station somehow knows the scheduled data size for each user
c=a in advance; 2) the same channel rate is across all RBs as
xf € {0,1} (5) well as all users. In the WLAN context, Yuan et al. [25]

To simplify notation, the dependence on times omitted. have considered a contiguous channel assignment problem to

Constraint (2) states that each RB can be assigned to rslR/IaxWeightaIgorithm always serves the user that maximiggst)r (i, t),

most one user, and constraint (3) just tel_ls that th? SyStQ\merle(t) andr(i,t) are the queue size and the instantaneous data rate of
has the total ofm RBs. The only added is constraint (4)useri, respectively.

Objective (1) above is indeed analogous to the PF algorit

subject toz zf <1, Ve (2)

2
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dynamically allocate the variable-width channel to eaateas

point (AP). The key difference from our problem is that no ° e

channel diversity (i.e. they assume the achievable dataisat

linear to the available bandwidth) is considered in theirAMNL —_—
context. That is, an AP with the fixed bandwidth will attaie th

same throughput regardless of its central frequency asdjgn Q e

which makes their problem as a special case of ours.
In summary the contiguous RB allocation constraint is a

crucial requirement for the LTE UL scheduling algorithms, ~ Ham-path [A.B.D.CJirG Ham-path [AA,,B,,B,,D,D,,C.C]in G’
yet no previous work has been devoted to this fundamental ] o ) ) ]
issue of SC-FDMA. Fig. 2 Equivalence between hamiltonian paths in a givenctice

graphG and its corresponding bipartite gragh

Il. HARDNESSRESULT

In this section we first show that unfortunately we cann raph ). For each user € U, for RB ¢, we set the value
y c=11if ce C;, andX{ = 0 if ¢ € C,. Similarly, for each

hope for an efficient algorithm that optimizes the objecfil/e useri € U, for RB ¢. we set\é — 1 if ¢ € C.. and\¢ = 0 if

under the contiguous RB restriction unless P = NP. We thén . X o ..
demonstrate thgt it is still computationally intractabtethe ¢'€ C1. (See Figure 3.) At this point, it seems clearly beneficial

ractical svstems to allocate RBs= () to userse Uj, and assign RBg C,. to
P Y ' userse U,. It implies that, in order to get as high aggregate
A. Hardness of objective (1) value as possible, 1) a user U; and a userc U, need to

Theorem 1:LTE UL PF-FDPS problem (i.e. maximizationbe assigned alternately in the frequency-domain due to the

of the PF objective (1) under the contiguous RB aIIoc:atio%ltem"ﬂe RB placement df; gnd Cr in our construction; .2)
constraint) is NP-hard. every user must be served in the end, since our contiguous

Proof: We use a reduction from Hamiltonian Path F,robfilllocatlon constraint prevents once-assigned users freimgb

: : re-assigned discontiguous RBs.
lem. Given a directed grapy = (V, E), we say that a path .
P in G is a hamiltonian pathif it contains each vertex in . Now we set the values for RBs C; to model the constraint

V exactly once. The problem asks whether a directed gra osed by the directed .edges Gf. Each chunk of RBs
G contains a hamiltonian path, and this is NP-complete [1 .Ct consists of + 2 contiguous RBs, and_we denote th_ose
As a pre-processing for our reduction, we can transform apy> asCy(0,—r); Ce(1i—r); - - - Ce(nr1,0r) 1N S€QUENCE if
given directed grapk into a bipartite grapit’, by splitting the chunk is for transition fronC; to C,. (in opposite, we
each nodes in G into two nodes; andwv, (say, left and right) denote a<; o,y - - -, Ct(n“ﬂ“jl))' For each use, ; € Uy

in G’; All the incoming/outgoing edges to/fromare attached 2" RBc € Ciygir) We seth] = =i+ 11if ¢ = j, and

to v anduv,, respectively, with adding an edge fromto v,. Au., = 0 if @7 J. S|mc|larly, for each uset,; € EJT on RB
(See Figure 2.) It is clear that’ contains a hamiltonian path ¢ € Ct(.r—n, We Set\; =i+ 1if i =j, andX, =0 if

if and only if ¢’ contains a hamiltonian path. i # j. We now encode connectivity among nodesdhinto

We now show that this hamiltonian path problem in bipaU" construction by examining each node’s incpming edges.
tite graph (HAM-PATH-BG) is reducible to our problem. AFOr €ach uset,.; € U, for RB ¢ € Cy(;;.), We first check
decision version of our problem is to determine whether f§¥hether its corresponding nodg; has incoming edges from
a given frequency-domain stat$s(i.e. a collection of value &Ny nodev,q, and sort, if any, them by in decreasing order
¢ across all users and all RBs), there exists a contigudf&Y:?Lgt; Vig2, .- -). Then fore € Cygi 1) We Sey =
allocation strategy with resulting aggregate value attléas "> — 9 +1if g = 91,("6' the ,"'?“geSt index), and_gj 7 g1,

Consider an arbitrary instance of HAM-PATH-BG, with, W€ S€tA, =g —g vv/hereg is the next larger index than
nodes f left nodesv;1,...,v, € V; andn right nodes 9 (e.g.ifg = g2 theng’ = g1). Lastly, we set\ = =0 for
Ur1-. Ve € V). We construct our frequency-domairf € Ci(ji—r) if j # g+ 1. Similarly, the values\;,  for users
status instance' as follows. A user inS corresponds to each € Ui 0N RBc € Cy; ;) are set in this way. Finally, we set
node inG’. For each left node;; and right nodev, ;, we the target aggregate vallie= T x 2n+ (n+2)(2n—1), which

have usew, ; € U, andu,; € U,, respectively. Thus, we havelS the total number of _RBs. This completes the construction
U)| + |Us| = n +n = 2n users. We partition the RBs into©f the frequency-domain status

three classeg’;, Cy, andC,. (i.e. left, transit, right). We take
a quantityT to be somewhat sufficiently larger than say,
T = n?. We arrange the RBs such thAtcontiguous RBs of
C; andC,. alternate with each other via+ 2 contiguous RBs

<« 20T+ (2n-1)(n+2) RBS—————>

<~ T=r—

of C,. Such a pattern (i.&; — C; — C,) repeats fomn times  usa&™" -
in the frequency-domain, so we haVie< 2n+ (n+2)(2n—1) " |1[1]1]2 0j0j0j0 11t 0j0jojo
RBs. (See Figure 3) vz |1(1(1]|1 0|0[0|0O 1{1]1(1 0|0|0|0O
. . . . 7:/0[0[0|0 1(1(1(1 0o|o0|0|0 1({1(1(1
We first assign the scheduling metric valyg for RBs € va [oToToTo0 AERERE) sTooTo AEAERE]

C;UC, such that the intermediate construction haslifferent " ———————————— p— .

contiguous allocation strategies that correspond ndyutal L__left | iTiransitii _right _ijtransiti[ _Teft __ijtransiti _right .

the n! possible hamiltonian paths (in the case of a completegiy 3 The intermediate construction reduced from an exampl
HAM-PATH-BG instanceG’, whereG’ is of 4 nodes (i.en = 2).
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@v@ the optimumOPT andOPT™* for the objective (1) under the
Ham-path §i,0,7,1,7127:5] in G~ contiguity constraint and without the constraint, resjpety.
@.‘.@ Let u(c) and u/(c) be users assigned RBby Z and Z*,
respectively.
Lemma 2:OPT* > OPT
< k=maxaggregate value = # RBs = 2n°T + (2n-1)(n+2)— Proof: Since/\ﬁ/(c) e for all ¢
iyarier L 2pSR _leT=rfot _ansl ] L_Yansit_} OPT* =Y A,y = OPT =3 X m
w1 0828 0| 0 [o[o[o[o[ o[ oo o [1]]2[2] o[ 2] 0o o[0[o[o] Therefore, the optimun®PT" for the objective (1) under the
a2 |1[1]1{1] 0| o[ 3] o]olo[o[o] o] o [ZiT08 111 1] il 07 0 31 0 |o|o[o[o| contiguity constraint is at most the optimu@hPT* without
w1 |0|0fofo[ oo f2Eod 1 1 1{1f0E 21| o | o [o|olofo| 0|0 |2[0|1|1]1[1] the constraint.
ur» |0{0|0/0]O|0|1|1]1|1f1|1j0|0|3|0|0[O|O(O|JO|O |1 k1T 1]1]1}1l
—— I11. APPROXIMATION ALGORITHM
[_left _j<—n+2—] right | [ left ] L right |

In this section we first presenflg5 to obtain 1/2-
Fig. 4 The reduction from an example HAM-PATH-BG instance approximation for this FDPS problem under contiguous RB
G’, whereG’ consists of 4 nodes (i.e. = 2). Dark-colored RBs  constraint. This randomized approximation algorithm isvho
represent a satisfiable contiguity strategy with aggreyalie k. ever too complex to be used in the practical FDPS, but we
present it here since it may give us an implication of the
approximable limits of this problem.

We let z¢® = 1 if all the RBs between RB: and b (i.e.

We claim that our resulting constructios has a feasible
allocation strategy if and only ¥’ contains a hamiltonian

. - p
path. Indeed, suppose there is a hamiltonian paty’inThe Pntiguous RBs from to b) are assigned to useyandz2® —

allocation of the contiguous RB chunks to users in order otherwise. We then could optimize our scheduling problem
the sequence of nodes traversing a hamiltonian path achieve wise. uld optimize ou uiing p

exactly the target aggregate valbesince the aggregate valueon solving the following integer program:
for each “transit” region can be + 2 only when there exists abnt
a directed edge untraversed. Such an allocation also aosfor maXZ Z Z Z T3 A

to the contiguity constraint, so it is a feasible strategy fo ¢ o bzatefab]

S. Conversely, suppose that there is a contiguous allocation subjecttoy "> a2 <1 Vi
strategyC' in S. In order to achieve the target valie every a b>a
user must be assigned in the end without being re-assigned ab
; . . ey 1 <
discontiguous RBs, which forms a hamiltonian pathGn m Z Z:t ;xl <1 vt
1 a<t b>
B. Computational intractability in practice x‘;b €{0,1} V(i,a,b) triples

Since we have proved in Theorem 1 that optimizing th@e cannot solve this integer programming directly, since we
objective (1) is NP-hard, now our last hope for optimizingroyed in Theorem 1 that optimizing our objective is NP-
the objective (1) is probably “brute-force” search in thes® hard, which means this integer program is NP-hard as well.
that it may work fine on the relatively small-sized input withsg algorithmAlg5 finds an approximation solution by using
help from high computing power. That is, even though thig jinear relaxation of the integer programming as follows W
problem itself is NP-hard, we may solve the problem by tryingyst relax the integrality constraint to readl < z* < 1,
all the possibilities if the size of the typical instance &l then we can solve the resulting linear program. This gives us

in practice. To examine whether or not brute-force searchfj§ctional valuesc®® and guarantees that the objectiveais
practicable, we first evaluate the running time of bruteéor |egstthe integer ozptimunOPT:

search on this problem.

Lemma 1:The running time of brute-force search for op- ZZZ Z 2P\ > OPT
timizing the objective (1) under the contiguity constraist
O(n!) if n <m, andO(n™) if n > m. (n users,m RBs)
The proof is given in the Appendix.

i a b>at€la,b]
We will now devise arounding scheméo obtain integer

Unfortunately both numbers, m are somewhat large in values for the variables, which we catf,,. These values
practice. For example, 3GPP LTE UL is planning to suppo?po.md satisfy all the constraints and also .o.btaln close-to
a scalable bandwidth of 5, 10, 20 and possibly 15 MHz, eagRUMuUM value. Suppos_e vye have a small positive real number
corresponds to 25, 50, 100, and 75 RBs, respectively [3], [4] We will do the.followmg. ) )

Moreover, we may have at least several tens of active userd) Solve the linear relaxation of the integer program, ob-
in a cell. Even in a sparse cell (say= 10), it takes about taining variablesr;,. _
4 secs to complete the search (1 operl us), which is too ~ 2) For eachi, ¢ pair initialize C; — 0 o .
slow to schedule data every 1 ms in the real systems. Thus3) Sort the(i, a,b) triples for whichz;, > 0 in increasing
we cannot optimize the objective (1) in practice either. order ofa.

4) For each(i, a,b) triple:
C. Upper bound of objective (1) a) Definepi, — axi,

We conclude this section with a natural result on the upper b) Let P, be the probability that by the time we
bound of objective (1). LeZ and Z* be algorithms to obtain consider (i,a,b), we havealready selected an
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intervaP which shares the samiealue or overlaps _Agt=2
[a b] useRB OPT = L*(m-1)
,b).
c) If we have not yet selected any interval for user Af1R o | L |L|L| . [L]L]L
i nor any interval which overlapg, b] then with Blof1foffoffo of ol o

probability p, /(1 — P?,) select intervali, a, b).
In order to bound the expected value of this rounding,
need to bound the probability of selecting inter{iak, b). We
will do this via the next two lemmata. (1) under contiguous RB constraint. Our greedy heurist@s d
Lemma 3:Provided thatl — P, > p', at the time we first not give guaranteed error bound, and moreover we beliete tha
consider(i, a, b), the overall probability of selectingi,a,b) no practical greedy algorithms can give an approximation to
will be exactly p?, . this particular problem (we will show it by giving bad ex-
Proof: The probability of selectingi, a,b) is the condi- amples). We however note that the approximation guarantee
tional probability that we seledti, a,b) given that we have only reflects the performance of the algorithm on the most
not yet selected an interval which shares the sanvalue pathological instance which is generally not common in prac
or overlaps|a, b] times the probability that we have not yetice. Our heuristics fine-tuned to the typical instanceshef t
selected an interval which shares the samelue or overlaps problem might not perform well in their worst case scenarios

[a,b]. The former probability iS—lfiﬁi provided this is less Yettheir overall performance is very good in practice, amsh
ab X

than or equal to one, and the latterlis- P%,. Multiplying " Section V

completes the proof. B A. Algl: carrier-by-carrier in turn

_ ) o
Lemma 4:As long asa < 3, when we consider inteval - Aq 5 starter, our first greedy heuristidlgl is a very

(i, a,b) we will havel = Py 2 pap- , . natural yet coarse adaptation of algoritt#i that optimizes

_ Proof: Let (4, a, b) be the first triple considered for which gy cive (1) without the contiguity constraint (.2 applies
this is not true. Since for every previously consideredlerip pg over each RB one-by-one in isolation). Emulatifig Alg1
the lemma held, all previously considergti o', ') had selec- cpeqyles data from RBto RBm in sequence, and for each
tion probability exactlyp,,,,. In addition, since we considerrp .. it assigns the best usérwho 1) has the maximum PF

intervals in order of: value, any overlapping previous intervalyatric value\¢ on ¢ and 2) satisfies the contiguity constraint.
must includea. So the probability of previously selecting an

interval with the sameé or an interval overlappinggu, b] will
be bounded by: Algorithm 1 : Carrier-by-carrier in turn
1: Let U be the set of schedulable users
i i i 2: Let A[m] be RB-to-user assignment status
ab < Z(i,u/,b/):a/<a Parer + Z(i’,a/,b’):a’<a§b/ Paryy 3: for RBc=1tom do
< (o —piy) + (= ply) pick the best usei € U with largest value\{

. , assign RBc to useri (i.e. Alc] « 4)
The second line follows from the fact thall intervals for Let I be RBs already assigned to user

Fig. 5 Bad example (2 users; RBs) for Algl. Dark-colored RBs
W@present a resulting assignment A¥y1. L is a very large number.

N aA

i have sum ofz’, at most one (and similarly all intervals if 7 =0 then
including a have sum ofr?, at most one). We conclude that U=U—-{Alc—1]}
i 1 .
if a < 3 then: o: end if

10: end for

1= Py > 1 - 20+ 2py, > 2pq,
- Since Alg1 schedules data from one end side RB, it is not
likely to even have a chance to try users’ high metric value

so\l/l\J/Eor?an now bound the overall expected value of tr’\‘?equency portions. Figure 5 shows such a undesirable case

) 1 L ... (this also demonstrated/gl cannot give an approximation).
(1)Theorem 2: Alg3s a 5-approximation for the PF objectlveASsignment of useB to RB2 prevents userd from being
Proof: Assuminga — % the probability of selecting scheduled on subsequent RBs, which would otherwise greatly

. . ! X - improve the result. We note that although such an extremel
(i,a,b) is at Ieast%a:jlb and summing this probability over P g 4

7 . bad case above is not realistic (or might not exist in pragtic
all i gives an expected value of half the linear program valu&zﬂS approach gives poor performance in general
= .

B. Alg2: largest-metric-value-RB-first

IV. HEURISTICALGORITHMS . :
. We have shown fromilig1 that scheduling RBs in sequence
Although Alg5 guarantees theoretically worst-case perfofrom one end side does not much help the problem. So,
mance bound, due to its high complex®g5 is impractical jjewing this scheduling problem as simply a packing prohlem

for wireless scheduling in the real systems. In this seolien aqhering to its rule of thumb “pack large items first’ may help
present a set of greedy heuristic algorithms for the objecti

3In this section we mean by a “bad” example a problem instanberev
2Here we refer to an interval as a chunk of contiguous RBs. the heuristic will lead to very bad results.
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in our case. Adopting such a quite intuitive judgemetity2 C. Alg3: riding peaks

schedules RBs with largest metric value first, with the idhed t Leamned lesson from the drawback 4fg2, we would like
!ater, RBS. with small value may only do S0 much damage. Aqg utilize each user’s high valued RBs as much as possible.
in fact, this approach can lead to an optimal result on the badLet’s look at the PF metric values{(t) = r(t)/Ri(1)) at
example in Figure 5, with nicely avoiding a snare in precgdlnIime slot¢t. One key observation is tlhat _fori each Zuséethe

RBs in order. ) . .
However, the contiguity constraint makes this problem mu(gr{enommatorRi(t)).ls constant for all RBs, so the resulting
value for each RB: is dominated by channel rateg(t)) only

harder than the well-studied packing problem; it is underta

how our action should be in the case that, for a certain u%@led down/up to the current service rate. Thus, at time slo

¢ a candidate RB is not adjacent to RBs already assignedlt$"8‘5‘Ch ussrtsWRB vgl;ets f:ggtuate exactly asﬂt]he ;:ha:jnnel r?tel
i (e.g. RB3 is first assigned ta, then the next largest valug®1anges between 0 - However, another fundamenta

one is RB of i. If RBA is already assigned to other userphy5|cal layer characteristic is that in multi-carrier tgyss

_— ; " ; - the channel SNR values (i.e. CQI) are correlated in both time
then the contiguity constraint prohibitfrom being assigned ;
to RB5. Shoul% Wye however zfssign RBo i if R§4 is gtill and frequency (depending on the Doppler effect and the delay

unoccupied?). Strictly adhering to the argument “packdar pread) [12], [20], [23]. In other words, if for each useRB c

items first”, Alg2 assigns those candidate RBs anyway unle gs good channel rate, then the neighboring RBsJ, ¢+ 1)

it clearly violates the contiguity constraint (i.e. it aps$ RB ave high channel rate as well with high probabflity
t0 7). Y gutty ( So the key idea ofAlg3 is to “ride users’ peaks” in

frequency domain, by exploiting such correlations. Rettedt
the conventional PF algorithm rides peaks in time domain.
Alg3, in fact, extendsdlg2’s rule of thumb: 1) look at large
value RBs first; 2) make them augmented by one neighbor
RB. This second rule enforces a bit conservative contiguity
condition (i.e. for a certain user a candidate RB must be
adjacentto RBs already assigned .

We first have all metric valuek{ sorted in decreasing order,

Algorithm 2 : largest-metric-value-RB-first
1: Let V' be the sorted list of all the metric value§ in
decreasing order
2: Let S be the set of not-yet-assigned RBs
3 k1
4: while S #  do

. i H th i c
2: E::tkIRbBeCRVI\gghaﬁre;g;gzzgigﬁégctgadgié €V.ced then pick the largest value element (i.e. a user-RB pair) tha
7: it none is yet assigned to RBs betwekand ¢ then does not _violate the adjaqgncy augmentat_ion rule. This mz_:\ke
s Let ' be all RBs located betweehand ¢ the algorithm much sensitive to the metric value fluctu_atlon
o: C'=C'U{e} among RBs. In the bad example of Figure&y3 can attain
10 assign all RB= C” to useri an optimal result by allocating the contiguous high valuesRB
11: S_G_(C V=V-_— {)\_c/}_ b 1 tq userB (userA will bg assigned to only one of enq side RBs,
12j else ’ v since the_y are not adjacent eac_h qther). Flgur(_e 7 |IIu$tmhm
13j ke ka1 “pe_ak Udmg” of Alg3. In the beginning useA is f|.rst aSS|gneq
14: end if to its high value RBs, while usé® andC' are assigned to their

peak RBs a little bit later. In the end they are all assigned to
the RBs around their peaks according to the rules. Note that
Alg?2 fails to allocate useB to its high value RBs, sinc®&’s

The price we pay for this a bit aggressive strategy is thgeak RB is surrounded by a bit highdis peak RBs.
we have to assign all the “in-between” RBs to a candidate
use_r ("e' It assigns RBto_i’ Wh'_Ch as a result_comes with 4A time-delayed channel model for the duration of an SC-FDM#Bol is
assignment of RB to 4, sincei is already assigned RB.  given by a channel vectdr. By adding the cyclic prefix, channel in frequency
The downside of this approach comes fiom this by-produira = ghen DALy | LT, ol e et T e
ass_lgnment. Slnc_e t_he length of _SUCh “'n'betwee_‘n" RBs g#e madg by linear combination @f indepen%ent raj;‘ldom variables. Hence,
arbitrary, a potential improvement in those RBs is likelyo® at most onlyL of them are independent, and the rest can be written as linear
cancelled. Figure 6 exemplifies such a case (this also shgw®bination (correlation) of others.
Alg2 cannot give an approximation). Assignment of uger
to the largest value RBs (each in the end sides) obstructs
assignment of useB on the “in-between” RBs, which would

. . ) assigned to user A . assigned to user C
otherwise greatly improve the result. It turns out thHy2's assigned to user B

strategy is too aggressive to attain the potential multiuse ;

15: end while

“not for user A

frequency diversity gain, which incurs performance penalt 3
©
o g
Alg2 = (L+1)*2 L2 g
RB OPT = L¥(m-2) + (L+1) m-1 n \/

Frequency domain

Fig. 6 Bad example (2 users; RBs) for Alg2. Dark-colored RBs
represent a resulting assignment Ajy2. L is a very large number. Fig. 7 Alg3 rides peaks.
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Algorithm 3 : riding peaks assigned to user B “not for user A
" n - assigned to user A
1: Let V be the sorted list of all the metric valuesg in | / all remaining RBS to user C
decreasing order .

2: Let S be the set of not-yet-assigned RBs
3 k1
4: while S # 0 do

PF metric value

5. pick RB c with k'" largest metric value¢ € V, c € S v
6: Let I be RBs already assigned to usger aIRs
7. if (c is adjacent tal) or (I = @) then \V/
8: assign RBc to useri oIR8 _
9 S—6_ {c} V=V_ {/\g}_ ke 1 Frequency domain
. L] 1)
10. else _ L
11: ke k+1 Fig. 9 Alg3 suffers from small-scale variation.
12f anr:f'l To deal with such small-scale variation, it would help to
13: end while extend our unit of consideration (i.e. the number of cortig

RBs that we view at a time). In the example of Figure 8 and
9, if we consider a group af contiguous RBs (say = 3)
This “peak riding” approach so far seems quite good. Theiigstead of one RB, then we have a wider view enough to obtain
exist, of course the cases where it can lead to very bad optimal solution. Thus, this RB grouping seems helpful
solutions. If for a certain user the channel rate across RBgcatch a bit large-scale fluctuatioAlg4 makes use of RB
changes arbitrarily, then sticking to peaks is not likelya@@ grouping to manage the weak frequency-domain correlation.
strategy. As mentioned earlier, we however can find typic@ihe following questions may arise: “how big should a group
instances displaying the frequency-domain correlatiooragn be?”, “is it a variable size?”, and “freedom of positioniiig?
RBs, and in fact, this approach can lead to a measuralfige harder we try to set up good criteria regarding those
improvement on both throughput and short-term fairness duestions, it becomes more a quagmire due to the NP-hard
the realistic UL SC-FDMA scenarios as shown in Section \hature. Here we set up simple rules: 1) divideRBs inton
Figure 8 shows an bad example fotlg3, which also groups;2) apply the “peak riding” over those RB groups. Thus
demonstrates it cannot give an approximation. In this exampi/g¢4 is an RB-grouping version aflig3; Alg4 “rides peaks”
we assign used and B to their peak RBs with the frequency-with the granularity of RB groups (one group [22] RBS).
domain correlation in mind (i.e. in the hope that thadljacent Notice that as» (i.e. the number of users) grows, the group
RBs also have high metric values), but no such correlatioa hgize gets smaller (i.e. we see the smaller-scale fluctyathen

leads to a very bad solution. a ground for our choice of %], we argue that it would be
beneficial to see the small-scale fluctuation with large neimb
Alg3 = (L+1)*2 .2 of users, since high multiuser frequency diversity canlitaté
NG OPT =L*(m-1) +1 m-1 the potential improvement from the small-scale peaks.
Aftaaf o | L | L|L Lot One can easily find a bad example fetlg4d and its
B| o [L+1f off o @ o ol o o inapproximability as well (example structure is similar to

_ Figure 8). However, such extremely bad instances are uylike
Fig. 8 Bad example (2 users; RBs) for Alg3. Dark-colored RBs to happen in practice, and in factiig4 exhibits constantly
represent a resulting assignment hjg3. L is a very large number. patter performance ovetlg3 on the real traces, particularly
D. Alg4: RB grouping when the number of users is not large {agrows, [ | RBs

Given that the frequency domain exhibits a correlatiokr)1eCOmeS 1 RB).

(more precisely, correlation between two adjacent RB$j3 V. SIMULATIONS
is expected to yield good performance. As mentioned in
Section IV-C, the channel quality values are indeed caiedla
in both time and frequency. However, in general the coriatat

To evaluate the performance of our heuristics, SC-FDMA
uplink system level simulations have been conducted based

on 3GPP LTE system model. We use traces generated as

in the frequency-domain is not as strong as the one in thetir% e : :

: i ) . . ecified in 3GPP deployment evaluation [2], based on Typica
QOm_aln (frequency-selective fading distortion) [20],12]Lhat .L?;ban channel modeﬁ T)allble 1 summarize[s]a list of the dyegault
implies that we have the overall frequency correlation bt 'ﬁ'hmulation parameters and assumptions

lgranu_lagt_y ma); not be az tsmball ?}S OnedTBtr(ll.e. the smoo We analyze the performance of the algorithms in terms of
INES In Figure 7 may need fo bé changed 1o the uneven On?ﬁ%ughput as well as short-term fairngsand assess how
_I_:lgure 9 (overall fluctuation S|r_n_|lar_to Figure 8 but with Sem, el they emulate the proportional fair criteria in this FBP
Jlt_ters) shows Fhat such a condition incurs poorre_sultsllyﬂ._ setting. However, since it is NP-hard to optimize objective
SlpceAlg3 relies on the strong frequency-qlomam correlgtlorel) under the contiguity constraint, we do not have such an
Itis ea_sny cheated _by the small-scale var|at|on._ln therigu optimal algorithm in our hand. Thus, we use an algorithm that
userB is falsely assigned to the abrupt peak, udes trapped

by the SU(.jden drop, and in the end uéeexpands its region s yejl.known problem of the conventional time-domain PFeubhling is
to that point. its poor short-term fairness.
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TABLE | Simulation parameters * !

o *777&777$—9\/‘—$
é - 09 M Ny ] */ M
Parameter Setting = E oo —
3 I 07— g = .
System bandwidth 20 MHz 5 b oosl / e
Subcarriers per RB 12 £ o | 0s L—" e
RB bandwidth 180 kHz g Sl o
Number of RBs 96 & - Algh T —ohon
Cell-level user distribution Uniform ® - " - ool - - wx Agd -
1I\_Iunf?‘ber OL alctlve users in Ce” |10f' 2t0’| 38' 4|?|' 50 d Number of active users in cell Number of active users in cell
raffic mode nfinitely backlogge
Transmission time interval (TTI) 1ms (@) cell throughput (b) fairness index (t=20ms)
Channel model Typical Urban
User speed 3, 30, 120 km/h ; : ; :
User receiver 1x2/MMSE/ZE Fig. %O System throughput and falfness with varying num. sersi
Modulation/coding rate settings QPSK: 1/3, 1/2, 2/3, 3/4 | e e
16QAM: 1/2, 2/3, 3/4 g 00 o K R X
HARQ model Ideal chase combining £ osp +7+757%,Q———B§
HARQ Aak/Nack delay 8 ms 2 T e c
Max. number of HARQ retransmission 3 g 06 L 8 oere| £
g 067 iA\gW 5
® osf e
X-- Algd
0.4 t t s .
optimizes objective (1) without the constraint as our refiee, 0 Y e e e * e
and we refer to this algorithm a3P7*. Note that, as shown
in Lemma 2,0PT™* offers an upper bound of the optimum. (a) 30 active user case (b) 50 active user case

We use Jain’s fairness index [14], measured by the data-rate

. o Fig. 11 Short-term fairness with varying time interval
fairness criterioft

with varying the number of active users. Figure 11(a) shows

[0, di(At))? : ;
Fy(At) = — , the short-term data-rate fairneg$ (At), in the cell of 30
[N i ¢i(At)?] active users, with extending the time interval winddw from
where ¢;(At) denotes the actual data-rate usachieved in 10 ms (i.e. 10 TTI) to 50 ms. In this setting/g3 consistantly
time interval At, with N users in the system. outperforms other algorithms in all intervals, followed by

We first measure the system throughput of our algorithri§94: Algl, and Alg2. To understand whyAlg3 provides
with varying the number of active users in the cell. As showpetter short-term fairness than others in this settlng,ewend_
in Figure 10(a),Alg4 results in the highest throughput amon he number of users scheduled per one TTI for each algorithm.
our heuristics, followed byllg3, Alg2, and Algl. This trend Figure 12(a) plots the average .number of users scheduled per
seems to match with our expectation, siné&j4 and Alg3 ©he TTI when 30 users are active in the cell. We can see that
contain more advanced heuristic idea than the other two. 3} °f730 users are likely assigned to all 96 RBs Aiy3 and
general, Alg3 performs better thanilgl and Alg2 because Algl. However, the crucial difference is thdigl is likely to
Alg3 seeks to take advantage of each users’ peak while b@lpcate arbitrary rate on each user whily3 seeks to assign
Algl and Alg2 are not so fine-tuned enough to effectivel}!Sers their peak RBs, which helps short-term “fair share” of
utilize multiuser frequency diversity. However, as seesnfr th€ frequency resource. Figure 10(b) presents the shont-te
Figure 10(a),Alg3 displays the poor performance with Sma|fa|r_ness of 20 ms mtt_arval window with increasing number of
number of active users (e.g. when = 10, it yields even 2ctive users. Interestlnglyilgl offers the best falrness_when
lower throughput thamlgl and Alg2). Such a result shows € number of users is large (e/g.= 50). See also Figure
the implication of the weak frequency-domain correlatiop, 11(P) and 12(b) for fairness and the average number of users
which Alg3 is easily misled into bad solutions. On the othefcheduled per a TTI with 50 users. With the large number of
hand, Alg4 contantly outperforms the other three algorithmgserS'Algl is able to balance users’ rates, but those are not
in all scenariosAlg4 deals with this small-scale variations bylikely from peak RBs. _ _ .
widening its view to[ 2] RBs. In the case of small number of At this point we note that comparison by each single metric
active usersdlg4 expands the RB-group size, and it rides eac}fParately, however, does not provide us much meaningful
users’ aggregated peak by catching a bit large-scale flictua insight on the performange. Moreover, achleV|_ng_ both hlg_h
(it attains 84% of0 PT* while Alg3 gets 77%.). As: grows, throughput and fairness is a somewhat conflicting goal in
Alg4 adaptively lessens the view so as to exploit the smaiéneral. For exampleligl performs even be*tte_r thaﬁ)PT:
scale fluctuation, and its performance gets similarig3 N terms of the short-term fairness whil@P7™ yields 127%
(whenn = 50, Alg4 and Alg3 reach 95% ofOPT* while greatgr throughput ovetig1. Hence, we need to compare the
the other two get around 86%). It is worth stressing again tHl90rithms by a comprehensive metric that takes both ttireug
OPT* does not represent the optimum of our objective bRt and faimess into account. Such a balance is pursueceby th
simply shows an upper bound of it, where the actual optimuRfoPortional fair criteria (i.e. maximizing ; log R;, wherer;
lies betweendlg4 and OPT* in general. is the long-term service rate for us@t which in fact is our

We now evaluate the short-term fairness of our algorlthmsﬁhis result seems quite intuitive in the sense tHay3 and Algl make

assignment decision on one single RB at a time wHile2 and Alg4 assign
6F¢(At):1 implies that all users received equal data-rate within tiite  potentially multiple RBs to a certain user at a time.



UCLA CSD TECHNICAL REPORT: TR-090001 9

[4] TSG-RAN WG1 #42, R1-050737, “Bandwidth of resource Hdocfor DL
OFDMA, London, UK, Sep, 2005.

[5] Moray Rumney. 3GPP LTE: Introducing Single-Carrier FBMgilent Measure-
ment Journal, 2008.

[6] 3GPP TSG-RAN WG2 Meeting #57, R2-070585, “Resourcerfragtation in LTE
uplink”, St. Louis, USA, Feb, 2007.

[7]1 M. Andrews. A survey of scheduling theory in wirelessalatetworksIMA, 2005.

[8] M. Andrews. Instability of the proportional fair schdig algorithm for HDR.
IEEE Transactions on Wlreless CommunicatioP804.

[9] M. Andrews, L. Qian, and A. Stolyar. Optimal utility basenulti-user throughput
allocation subject to throughput constrainttSEE INFOCOM 2005.

Avg. users scheduled per TT|
Avg. users scheduled per TTI

]

OFT= MGl Az A At OFT= MGl Az A At [10] M. Andrews and L. Zhang. Scheduling algorithms for raakrrier wireless data
. . systems ACM MobiCom 2007.
(a) 30 active user case (b) 50 active user case [11] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushay and S. Viterbi.
CDMA/HDR: A bandwidth efficient high speed data service famadic users.
Fig. 12 Average num. of users scheduled per 1 TTI IEEE Communications Magazin@000.

[12] E. Biglieri, J. Proakis, and S. Shamai. Fading chanriefermation-theoretic and

. . . . . communications aspectfEEE Trans. on Information Theory000.
ultimate obJect|ve function. We recall that the conventibn [13] R. Cohen and L. Katzir. Computational analysis and iefficalgorithms for micro

PF algorithm optimizes the proportional fair criteria satth and macro OFDMA schedulindEEE INFOCOM 2008. _
. .. . [14] R. Jain, D. M. Chiu, and W. Hawe. A Quantitative MeasufeFairness and
It maximizes |0ng'term throughputs of the useetative to Discrimination for Resource Allocation in Shared SystePEC Research Report

their channel conditions, and our main goal is to maximize ] /TARE?;?;} R. Padovani, and R. Pankai, Data throughfuCOMA-HDR a high
the PF criteria in the FDPS context. Now we assess how wéi? efficiency -high data rate personal communication wirelegstem.IEEE VTG
2000.

our heuristics emulate the proportional fair objective ur o

. 16] J. Kleinberg and E. Tardos. Algorithm Desighddison Wesley2005.
prOblem framework. In the foIIowmg table we show the Valuehﬂ H. Kushner and P. Whiting. Asymptotic properties of podional-fair sharing
of the PF criteria with 30 active users in the cell. algorithms.Allerton, 2002. n o
[18] X. Liu, E. Chong, and N. B. Shroff. A framework for opportistic scheduling in
Z. 1og R; wireless networksComputer Networks2003.
oPT* 523 1 [19] A. Pokhariyal, T. E. Kolding, and P. E. Mogensen. Perfance of Downlink
. Frequency Domain Packet Scheduling for the UTRAN Long Tewwl&ion. IEEE
Alol 216.5 PIMRC, 2006.
[20] B. Sklar. Rayleigh fading channels in mobile digitahomunication systems, Part
A|92 218.9 I: CharacterizationlEEE Communications Magazin&997.
AIgS 220.6 [21] B. Sklar. Rayleigh fading channels in mobile digitahwmunication systems, Part
II: Mitigation. IEEE Communications Magazin&997.
Alg4 221.6 [22] D. Tse. Multiuser diversity in wireless networks.

http://www.eecs.berkeley.edu/ dtse/stanford416.p0220

We can see thaﬂlg4 has the highest value ozi 10g R;, [23] W.Wang, T. Ottosson, M. Sternad, A. Ahlen, and A. Svens$émpact of multiuser
. diversity and channel variability on adaptive OFDMEEE VTG 2003.
followed by Alg3, Alg2 and Algl. We obtain the same trend [24] C.Wengerter, J. Ohlhorst, and A. G. E. Elbwart. Faisnasd Throughput Analysis

(with similar gaps between values) in all other scenarios. for Generalized Proportional Fair Frequency Schedulin@®DMA. IEEE VTG
A . . 2005.
As we underlined earliel) PT* simply represents an UPPEr25] v. yuan, P. Bahl, R. Chandra, T. Moscibroda, and Y. Wu.Cbiannelize the

bound of the optimum of our objective, so the actual optimum  Channels in WLANACM MobiCom 2007.
has a value o}, log R; betweenAlg4 andOPT*. Therefore,

among our heuristicsilg4 has the value of the PF criteria
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APPENDIX

criteria in UL FDPS setting. Proof: First, we cpnsider the number of possi.ble. ordering
whenk users are assigned to RBs under the contiguity con-
VI. CONCLUSIONS straint wheren > m (i.e. the number of users is greater than

Due to its single carrier property of SC-FDMA, LTE ULthat of RBs). We initially pre-positiort users in sequence:
requires the RBs allocated to a single user to be contiguous: —1)(n —2)---(n—k+1) = H?;é (n — 7).
in frequency. In this paper we explored this fundamental With keeping those orders, we fill the remainimg- k spots
problem of frequency-domain scheduling under contigudis oy adding some of thosk users under contiguity constraint.

allocation constraint. We investigated how to adapt theetimWe havem spots andk users, which is represented by a

domain PF algorithm to this problem framework. We firgpositive integer-valued vectdt:,, 2, - - - , z%):
showed the NP-hard nature of this problem, then presented _
a set of practical algorithms fine tuned to this problem. T+ a2+ tap=m x;>21li=1--k

Among them, an algorithm that exploits the frequency-demak, there ar m— 1) distinct vectors satisfying the condition.
correlations in concert with an adaptive RB grouping teghai H . ’“_é f ible orderi Iy k-1
emulates best the PF criteria in the LTE UL FDPS context. ¢, (€ NUMDEr ot possible ordering G%L'—l) HJ:O (n—

Finally we believe that no practical wireless scheduling af)- W& havel < k < m (we cannot assign more tham users
gorithms can give an approximation to this particular peoto| at a time) users, so the total search space is:

but whether there actually exists such an algorithm or rilbt st m i1
remains as an open problem. T(n,m) = Z (m — 1) H(" — Pl =omm
’ ; 1—1 /)
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