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Abstract—With the power consumption issue of mobile handset
taken into account, Single-carrier FDMA (SC-FDMA) has been
selected for 3GPP Long-Term Evolution (LTE) uplink multipl e
access scheme. Like in OFDMA downlink, it enables multiple
users to be served simultaneously in uplink as well. However, its
single carrier property requires that all the subcarriers allocated
to a single user must becontiguous in frequency within each time
slot. This contiguous allocation constraint limits the scheduling
flexibility, and frequency-domain packet scheduling algorithms
in such system need to incorporate this constraint while trying
to maximize their own scheduling objectives.

In this paper we explore this fundamental problem of LTE
SC-FDMA uplink scheduling by adopting the conventional time-
domain Proportional Fair algorithm to maximize its objective
(i.e. proportional fair criteria) in the frequency-domain setting.
We show the NP-hardness of the frequency-domain scheduling
problem under this contiguous allocation constraint and present
a set of practical algorithms fine tuned to this problem. We
demonstrate that competitive performance can be achieved in
terms of system throughput as well as fairness perspective,which
is evaluated using 3GPP LTE system model simulations.

I. I NTRODUCTION

In recent years Orthogonal Frequency Division Multiple
Access (OFDMA) has been considered as a strong candidate
for the broadband air interface for its robustness to multipath
fading, higher spectral efficiency and bandwidth scalability,
and it has been selected for 3GPP Long-Term Evolution (LTE)
downlink (DL) radio access technology. However, one major
disadvantage of OFDMA is that the instantaneous transmitted
RF power can vary dramatically within a single OFDM
symbol. Such an undesirable high peak-to-average power ratio
(PAPR) is a serious concern for the uplink (UL), since power
consumption is a key consideration for the mobile handsets.
As a result of seeking an alternative to OFDMA, Single-
carrier FDMA (SC-FDMA) has been selected for LTE uplink
multiple access scheme. While keeping most of the advantages
of OFDMA (e.g. the same degree of multipath protection), SC-
FDMA has significantly lower PAPR, since the underlying
waveform is essentially single-carrier. Thus, lower PAPR of
SC-FDMA greatly benefits the mobile terminal in terms of
transmit power efficiency.

As in DL OFDMA, multiple access in UL SC-FDMA
is achieved by assigning different frequency portions of the
system bandwidth to individual users based on their channel
conditions. Such simultaneous frequency-domain multiplexing
of users (inherently in concert with time-domain scheduling)
is performed byfrequency domain packet scheduling(FDPS).
In LTE UL, the system bandwidth is divided into multiple
subbands (i.e. groups of subcarriers) denoted asphysical

resource blocks(RBs). In order to achieve large gain from
multiuser frequency diversity, a scheduler needs to know the
instantaneous radio channel conditions across all users and all
RBs, which are fed as input for the frequency-domain adaptive
user-to-RB allocation. For example, in LTE UL each user
transmits a Sounding Reference Signal (SRS) to the scheduling
node (i.e. base station) [1], which is used aschannel quality
indicator (CQI). With CQIs across all users and all RBs, a base
station performs RB-to-user assignment at each time slot (e.g.
in LTE every 1ms) according to the selected scheduling policy.
Thus, in the time-frequency domain, an RB is considered as
a minimum scheduling resolution, and also a minimum unit
of the data-rate adaptation byadaptive modulation and coding
(AMC) with a granularity of one sub-frame.

Most of the DL FDPS algorithms proposed so far adopt
the well-known time-domainProportional Fair (PF) algorithm
as a basic scheduling principle and apply the PF algorithm
directly over each RB one-by-one independently. However,
such scheduling strategies cannot be employed in the UL SC-
FDMA. Due to its single carrier property, SC-FDMA requires
that all the RBs allocated to a single user must becontiguous
in frequency within each time slot (i.e. sub-frame) [5], [6].
Thus, LTE UL FDPS algorithms should respect this constraint
while trying to maximize their own scheduling objectives.

In this paper we study this fundamental problem of UL
frequency-domain packet scheduling under contiguous RB
allocation constraint. We analyze this problem by adopting
the widely employed PF algorithm to maximize its objective
(i.e. proportional fair criteria) in the frequency-domainsetting.
The main goal of this paper is to investigate how to adapt the
time-domain PF algorithm to this problem framework.

A. The Model

We consider a cellular network whose UL system bandwidth
is divided intom RBs, and we have a single base station and
n active wireless users. The base station can allocatem RBs
to a set ofn users. At each time slot multiple RBs (with the
contiguity constraint) can be assigned to a single user, each
RB however can be assigned to at most one user. In this paper
we shall work in aninfinitely backloggedmodel in which for
each user there is always data available for service. Thus, the
base station can schedule all them RBs every time slot.

We define the indicator variablexc
i (t) to indicate whether

or not RB c is assigned to useri at time slott. We assume
that channel conditions vary across RBs as well as users.
The channel conditions typically depends on the channel
frequency, so they may be different for different channels;
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moreover, they also depends on the user location and the time
slot. Therefore, each RB hasuser-dependentandtime-varying
channel condition. We userc

i (t) to denote the instantaneous
channel rate for useri on RB c at time t. This channel rates
are estimated from the CQIs extracted from the UL channel
sounding. Thus, ifxc

i (t) = 1, then useri can transmit data of
sizerc

i (t) on RB c at time slott.

B. Problem Formulation

In the time-domain context, the well known Proportional
Fair (PF) algorithm aims to maximize, over all feasible
scheduling rules, the utility function

∑

i log Ri, whereRi is
the long-term service rate of useri. This objective is known
asproportional fair criteria. Maximizing

∑

i log Ri not only
improves overall throughput but also prevents any user from
being completely starved sincelog 0 = −∞. In order to
maximize

∑

i log Ri, we should serve the user who maximizes
ri(t)/Ri(t) at each time slott (proven in [7], [17], [22]). Note
that the PF algorithm achieves high throughput and maintains
proportional fairness among all users by giving priority to
users with a high-quality channel rate (ri(t)) and a low current
average service rate (Ri(t)).

We now adapt this time-domain PF metric to the frequency-
domain setting with the utility function

∑

i log Ri as our
objective. Letλc

i (t) = rc
i (t)/Ri(t) be thePF metric value

that useri has on RBc at time slott. As justified in [10], we
can establish a FDPS version of PF objective function when
scheduling time slott as follows:

max
∑

i

∑

c

xc
i (t)λ

c
i (t) (1)

Objective (1) above is indeed analogous to the PF algorithm
which maximizes

∑

i xi(t) · ri(t)/Ri(t) in the time-domain
setting. Hence, optimizing the objective (1) makes the util-
ity function

∑

i log Ri maximized in the frequency-domain
setting. For this reason, most of the proposed DL FDPS
scheduling algorithms apply the PF algorithm directly over
each RB one-by-one, i.e. for RBc the PF algorithm selects the
best user who maximizesrc

i (t)/Ri(t) at time slott. However,
for LTE UL we need to add the contiguous RB constraint into
this objective (1) due to the physical layer requirement of SC-
FDMA. Accordingly, we can rewrite the objective (1) more
precisely as the following optimization problem:

max
∑

i

∑

c

xc
iλ

c
i (1)

subject to
∑

i

xc
i ≤ 1, ∀c (2)

∑

i

∑

c

xc
i ≤ m (3)

b
∑

c=a

xc
i = b− a + 1, ∀i, xa

i = xb
i = 1 (4)

xc
i ∈ {0, 1} (5)

To simplify notation, the dependence on timet is omitted.
Constraint (2) states that each RB can be assigned to at
most one user, and constraint (3) just tells that the system
has the total ofm RBs. The only added is constraint (4),
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Fig. 1 Maximizing the PF objective. The numbers denote the PF
metric valuesλc

i . Dark-colored RBs represent assignment strategies
maximizing the objective with/without the contiguity constraint.

which enforces the contiguous RB allocation. Now we need
to optimize the objective (1) with keeping to those constraints
(i.e. choose the valuexc

i (t) to maximize the PF objective
(1)). One crucial difference is that we now cannot apply the
PF algorithm on each RB one-by-one in isolation. In other
words, the isolated local optimization of each RB hardly
optimizes the objective (1). Figure 1 exemplifies the case.
With the contiguity constraint we may need to serve users
with suboptimal PF metric valueλc

i for some RBs so as to
optimize the PF objective (1).

Seeking to maximize the PF objective (1) under this contigu-
ity constraint, we present five variations of PF-FDPS algorithm
(Alg1 throughAlg5). In this paper we explore the fundamental
nature of this scheduling problem by investigating how well
each of these five algorithms fits into the problem framework.

C. Related Work

The Proportional Fair (PF) algorithm was introduced by
[15], [22], extensively studied in the research community (e.g.
delay [9], [18], instability [7], [8]), and it is widely usedas
a standard scheduling algorithm in the current single-carrier
wireless systems such as CDMA 2000 1xEV-DO [11], [15].

The area of FDPS scheduling is new, and most of studies
directly adapt the time-domain PF algorithm into frequency-
domain context. Their results show the potential gains of up
to 40-60% average system capacity improvement over time-
domain only scheduling [19], and moreover [24] shows that
the frequency selectivity of FDPS indeed helps significantly
improve the short-term fairness. Andrews et al. [10] have
proposed the FDPS-version ofMaxWeight algorithm1, and
addressed the resource wastage problem induced by small-
queue condition in DL FDPS context. The objective of the
MaxWeight algorithm is the system stability, and the authors
have presented the performance from the queue perspective.

Cohen et al. [13] recently studied the DL OFDMA schedul-
ing problem somewhat related to this contiguous allocation
requirement in WiMAX. They present several heuristic al-
gorithms for constructing the OFDMA frame matrix as a
collection of rectangles which fit into a single matrix. The
algorithms, however, assume that 1) at each time slot the base
station somehow knows the scheduled data size for each user
in advance; 2) the same channel rate is across all RBs as
well as all users. In the WLAN context, Yuan et al. [25]
have considered a contiguous channel assignment problem to

1MaxWeightalgorithm always serves the user that maximizesQs
i (t)r(i, t),

whereQs
i (t) andr(i, t) are the queue size and the instantaneous data rate of

useri, respectively.
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dynamically allocate the variable-width channel to each access
point (AP). The key difference from our problem is that no
channel diversity (i.e. they assume the achievable data rate is
linear to the available bandwidth) is considered in their WLAN
context. That is, an AP with the fixed bandwidth will attain the
same throughput regardless of its central frequency assigned,
which makes their problem as a special case of ours.

In summary the contiguous RB allocation constraint is a
crucial requirement for the LTE UL scheduling algorithms,
yet no previous work has been devoted to this fundamental
issue of SC-FDMA.

II. H ARDNESSRESULT

In this section we first show that unfortunately we cannot
hope for an efficient algorithm that optimizes the objective(1)
under the contiguous RB restriction unless P = NP. We then
demonstrate that it is still computationally intractable in the
practical systems.

A. Hardness of objective (1)

Theorem 1:LTE UL PF-FDPS problem (i.e. maximization
of the PF objective (1) under the contiguous RB allocation
constraint) is NP-hard.

Proof: We use a reduction from Hamiltonian Path Prob-
lem. Given a directed graphG = (V, E), we say that a path
P in G is a hamiltonian pathif it contains each vertex in
V exactly once. The problem asks whether a directed graph
G contains a hamiltonian path, and this is NP-complete [16].
As a pre-processing for our reduction, we can transform any
given directed graphG into a bipartite graphG′, by splitting
each nodev in G into two nodesvl andvr (say, left and right)
in G′; All the incoming/outgoing edges to/fromv are attached
to vl andvr, respectively, with adding an edge fromvl to vr.
(See Figure 2.) It is clear thatG′ contains a hamiltonian path
if and only if G contains a hamiltonian path.

We now show that this hamiltonian path problem in bipar-
tite graph (HAM-PATH-BG) is reducible to our problem. A
decision version of our problem is to determine whether for
a given frequency-domain statusS (i.e. a collection of value
λc

i across all users and all RBs), there exists a contiguous
allocation strategy with resulting aggregate value at least k.

Consider an arbitrary instance of HAM-PATH-BG, with2n
nodes (n left nodesvl,1, . . . , vl,n ∈ V ′

l and n right nodes
vr,1, . . . , vr,n ∈ V ′

r ). We construct our frequency-domain
status instanceS as follows. A user inS corresponds to each
node in G′. For each left nodevl,i and right nodevr,i, we
have userul,i ∈ Ul andur,i ∈ Ur, respectively. Thus, we have
|Ul| + |Ur| = n + n = 2n users. We partition the RBs into
three classesCl, Ct, andCr (i.e. left, transit, right). We take
a quantityT to be somewhat sufficiently larger thann; say,
T = n2. We arrange the RBs such thatT contiguous RBs of
Cl andCr alternate with each other vian+2 contiguous RBs
of Ct. Such a pattern (i.e.Cl → Ct → Cr) repeats forn times
in the frequency-domain, so we haveT ×2n+(n+2)(2n−1)
RBs. (See Figure 3.)

We first assign the scheduling metric valueλc
i for RBs ∈

Cl∪Cr such that the intermediate construction hasn! different
contiguous allocation strategies that correspond naturally to
the n! possible hamiltonian paths (in the case of a complete

A

CD

B

Ham-path [A,B,D,C] in G

A l

BrBl

Ar

Cl

DrDl

Cr

Ham-path [Al,Ar,Bl,Br,Dl,Dr,Cl,Cr] in G’

Fig. 2 Equivalence between hamiltonian paths in a given directed
graphG and its corresponding bipartite graphG′

graphG). For each useri ∈ Ul for RB c, we set the value
λc

i = 1 if c ∈ Cl, andλc
i = 0 if c ∈ Cr. Similarly, for each

useri ∈ Ur for RB c, we setλc
i = 1 if c ∈ Cr, andλc

i = 0 if
c ∈ Cl. (See Figure 3.) At this point, it seems clearly beneficial
to allocate RBs∈ Cl to users∈ Ul, and assign RBs∈ Cr to
users∈ Ur. It implies that, in order to get as high aggregate
value as possible, 1) a user∈ Ul and a user∈ Ur need to
be assigned alternately in the frequency-domain due to the
alternate RB placement ofCl andCr in our construction; 2)
every user must be served in the end, since our contiguous
allocation constraint prevents once-assigned users from being
re-assigned discontiguous RBs.

Now we set the values for RBs∈ Ct to model the constraint
imposed by the directed edges inG′. Each chunk of RBs
∈ Ct consists ofn + 2 contiguous RBs, and we denote those
RBs asCt(0,l→r), Ct(1,l→r), . . . , Ct(n+1,l→r) in sequence if
the chunk is for transition fromCl to Cr (in opposite, we
denote asCt(0,r→l), . . . , Ct(n+1,r→l)). For each userul,i ∈ Ul

on RB c ∈ Ct(j,l→r), we setλc
ul,i

= i + 1 if i = j, and
λc

ul,i
= 0 if i 6= j. Similarly, for each userur,i ∈ Ur on RB

c ∈ Ct(j,r→l), we setλc
ur,i

= i + 1 if i = j, andλc
ur,i

= 0 if
i 6= j. We now encode connectivity among nodes inG′ into
our construction by examining each node’s incoming edges.
For each userur,i ∈ Ur for RB c ∈ Ct(j,l→r), we first check
whether its corresponding nodevr,i has incoming edges from
any nodevl,g, and sort, if any, them byg in decreasing order
(say,vl,g1, vl,g2, . . .). Then forc ∈ Ct(g+1,l→r) we setλc

ur,i
=

n − g + 1 if g = g1 (i.e. the largest index), and ifg 6= g1,
we setλc

ur,i
= g − g′ whereg′ is the next larger index than

g (e.g. if g = g2 then g′ = g1). Lastly, we setλc
ur,i

= 0 for
c ∈ Ct(j,l→r) if j 6= g+1. Similarly, the valuesλc

ul,i
for users

∈ Ul on RB c ∈ Ct(j,r→l) are set in this way. Finally, we set
the target aggregate valuek = T×2n+(n+2)(2n−1), which
is the total number of RBs. This completes the construction
of the frequency-domain statusS.
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Fig. 3 The intermediate construction reduced from an example
HAM-PATH-BG instanceG′, whereG′ is of 4 nodes (i.e.n = 2).
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Fig. 4 The reduction from an example HAM-PATH-BG instance
G′, whereG′ consists of 4 nodes (i.e.n = 2). Dark-colored RBs
represent a satisfiable contiguity strategy with aggregatevaluek.

We claim that our resulting constructionS has a feasible
allocation strategy if and only ifG′ contains a hamiltonian
path. Indeed, suppose there is a hamiltonian path inG′. The
allocation of the contiguous RB chunks to users in order of
the sequence of nodes traversing a hamiltonian path achieves
exactly the target aggregate valuek, since the aggregate value
for each “transit” region can ben + 2 only when there exists
a directed edge untraversed. Such an allocation also conforms
to the contiguity constraint, so it is a feasible strategy for
S. Conversely, suppose that there is a contiguous allocation
strategyC in S. In order to achieve the target valuek, every
user must be assigned in the end without being re-assigned
discontiguous RBs, which forms a hamiltonian path inG.

B. Computational intractability in practice

Since we have proved in Theorem 1 that optimizing the
objective (1) is NP-hard, now our last hope for optimizing
the objective (1) is probably “brute-force” search in the sense
that it may work fine on the relatively small-sized input with
help from high computing power. That is, even though this
problem itself is NP-hard, we may solve the problem by trying
all the possibilities if the size of the typical instance is small
in practice. To examine whether or not brute-force search is
practicable, we first evaluate the running time of brute-force
search on this problem.

Lemma 1:The running time of brute-force search for op-
timizing the objective (1) under the contiguity constraintis
O(n!) if n < m, andO(nm) if n ≥ m. (n users,m RBs)
The proof is given in the Appendix.

Unfortunately both numbersn, m are somewhat large in
practice. For example, 3GPP LTE UL is planning to support
a scalable bandwidth of 5, 10, 20 and possibly 15 MHz, each
corresponds to 25, 50, 100, and 75 RBs, respectively [3], [4].
Moreover, we may have at least several tens of active users
in a cell. Even in a sparse cell (sayn = 10), it takes about
4 secs to complete the search (1 oper.≈ 1 µs), which is too
slow to schedule data every 1 ms in the real systems. Thus,
we cannot optimize the objective (1) in practice either.

C. Upper bound of objective (1)

We conclude this section with a natural result on the upper
bound of objective (1). LetZ andZ∗ be algorithms to obtain

the optimumOPT andOPT ∗ for the objective (1) under the
contiguity constraint and without the constraint, respectively.
Let u(c) and u′(c) be users assigned RBc by Z and Z∗,
respectively.

Lemma 2:OPT ∗ ≥ OPT
Proof: Sinceλc

u′(c) ≥ λc
u(c) for all c

OPT ∗ =
∑

c λc
u′(c) ≥ OPT =

∑

c λc
u(c)

Therefore, the optimumOPT for the objective (1) under the
contiguity constraint is at most the optimumOPT ∗ without
the constraint.

III. A PPROXIMATION ALGORITHM

In this section we first presentAlg5 to obtain 1/2-
approximation for this FDPS problem under contiguous RB
constraint. This randomized approximation algorithm is how-
ever too complex to be used in the practical FDPS, but we
present it here since it may give us an implication of the
approximable limits of this problem.

We let xab
i = 1 if all the RBs between RBa and b (i.e.

contiguous RBs froma to b) are assigned to useri, andxab
i =

0 otherwise. We then could optimize our scheduling problem
by solving the following integer program:

max
∑

i

∑

a

∑

b≥a

∑

t∈[a,b]

xab
i λt

i

subject to
∑

a

∑

b≥a

xab
i ≤ 1 ∀i

∑

i

∑

a≤t

∑

b≥t

xab
i ≤ 1 ∀t

xab
i ∈ {0, 1} ∀(i, a, b) triples

We cannot solve this integer programming directly, since we
proved in Theorem 1 that optimizing our objective is NP-
hard, which means this integer program is NP-hard as well.
So algorithmAlg5 finds an approximation solution by using
a linear relaxation of the integer programming as follows. We
first relax the integrality constraint to read0 ≤ xab

i ≤ 1,
then we can solve the resulting linear program. This gives us
fractional valuesxab

i and guarantees that the objective isat
least the integer optimumOPT :

∑

i

∑

a

∑

b≥a

∑

t∈[a,b]

xab
i λt

i ≥ OPT

We will now devise arounding schemeto obtain integer
values for the variables, which we call̂xi

ab. These values
should satisfy all the constraints and also obtain close-to-
optimum value. Suppose we have a small positive real number
ǫ. We will do the following:

1) Solve the linear relaxation of the integer program, ob-
taining variablesxi

ab.
2) For eachi, t pair initialize Ci

t ← 0
3) Sort the(i, a, b) triples for whichxi

ab > 0 in increasing
order ofa.

4) For each(i, a, b) triple:
a) Defineρi

ab ← αxi
ab

b) Let P i
ab be the probability that by the time we

consider (i, a, b), we have already selected an



UCLA CSD TECHNICAL REPORT: TR-090001 5

interval2 which shares the samei value or overlaps
[a, b].

c) If we have not yet selected any interval for user
i nor any interval which overlaps[a, b] then with
probability ρi

ab/(1− P i
ab) select interval(i, a, b).

In order to bound the expected value of this rounding, we
need to bound the probability of selecting interval(i, a, b). We
will do this via the next two lemmata.

Lemma 3:Provided that1−P i
ab ≥ ρi

ab at the time we first
consider(i, a, b), the overall probability of selecting(i, a, b)
will be exactlyρi

ab.
Proof: The probability of selecting(i, a, b) is the condi-

tional probability that we select(i, a, b) given that we have
not yet selected an interval which shares the samei value
or overlaps[a, b] times the probability that we have not yet
selected an interval which shares the samei value or overlaps
[a, b]. The former probability is ρi

ab

1−P i
ab

provided this is less

than or equal to one, and the latter is1 − P i
ab. Multiplying

completes the proof.
Lemma 4:As long asα ≤ 1

2 , when we consider interval
(i, a, b) we will have1− P i

ab ≥ ρi
ab.

Proof: Let (i, a, b) be the first triple considered for which
this is not true. Since for every previously considered triple
the lemma held, all previously considered(i′, a′, b′) had selec-
tion probability exactlyρi′

a′b′ . In addition, since we consider
intervals in order ofa value, any overlapping previous interval
must includea. So the probability of previously selecting an
interval with the samei or an interval overlapping[a, b] will
be bounded by:

P i
ab ≤

∑

(i,a′,b′):a′<a
ρi

a′b′ +
∑

(i′,a′,b′):a′<a≤b′
ρi′

a′b′

≤ (α− ρi
ab) + (α− ρi

ab)

The second line follows from the fact thatall intervals for
i have sum ofxi

ab at most one (and similarly all intervals
including a have sum ofxi

ab at most one). We conclude that
if α ≤ 1

2 then:

1− P i
ab ≥ 1− 2α + 2ρi

ab ≥ 2ρi
ab

We can now bound the overall expected value of the
solution.

Theorem 2: Alg5is a 1
2 -approximation for the PF objective

(1).
Proof: Assuming α = 1

2 , the probability of selecting
(i, a, b) is at least 1

2xi
ab and summing this probability over

all i gives an expected value of half the linear program value.

IV. H EURISTIC ALGORITHMS

Although Alg5 guarantees theoretically worst-case perfor-
mance bound, due to its high complexityAlg5 is impractical
for wireless scheduling in the real systems. In this sectionwe
present a set of greedy heuristic algorithms for the objective

2Here we refer to an interval as a chunk of contiguous RBs.

L L0 L LLL ...L

0 01 0 000 ...0

user
RB

A

B

1

0 000001 0 0 0 0 0 0

OPT = L*(m-1)

Alg1 = 2
˜ 0˜

Fig. 5 Bad example (2 users,m RBs) for Alg1. Dark-colored RBs
represent a resulting assignment byAlg1. L is a very large number.

(1) under contiguous RB constraint. Our greedy heuristics do
not give guaranteed error bound, and moreover we believe that
no practical greedy algorithms can give an approximation to
this particular problem (we will show it by giving bad ex-
amples3). We however note that the approximation guarantee
only reflects the performance of the algorithm on the most
pathological instance which is generally not common in prac-
tice. Our heuristics fine-tuned to the typical instances of the
problem might not perform well in their worst case scenarios,
yet their overall performance is very good in practice, as shown
in Section V

A. Alg1: carrier-by-carrier in turn

As a starter, our first greedy heuristicAlg1 is a very
natural yet coarse adaptation of algorithmZ∗ that optimizes
objective (1) without the contiguity constraint (i.e.Z∗ applies
PF over each RB one-by-one in isolation). EmulatingZ∗, Alg1
schedules data from RB1 to RBm in sequence, and for each
RB c it assigns the best useri who 1) has the maximum PF
metric valueλc

i on c and 2) satisfies the contiguity constraint.

Algorithm 1 : Carrier-by-carrier in turn
1: Let U be the set of schedulable users
2: Let A[m] be RB-to-user assignment status
3: for RB c = 1 to m do
4: pick the best useri ∈ U with largest valueλc

i

5: assign RBc to useri (i.e. A[c]← i)
6: Let I be RBs already assigned to useri
7: if I = ∅ then
8: U = U − {A[c− 1]}
9: end if

10: end for

SinceAlg1 schedules data from one end side RB, it is not
likely to even have a chance to try users’ high metric value
frequency portions. Figure 5 shows such a undesirable case
(this also demonstratesAlg1 cannot give an approximation).
Assignment of userB to RB2 prevents userA from being
scheduled on subsequent RBs, which would otherwise greatly
improve the result. We note that although such an extremely
bad case above is not realistic (or might not exist in practice),
this approach gives poor performance in general.

B. Alg2: largest-metric-value-RB-first

We have shown fromAlg1 that scheduling RBs in sequence
from one end side does not much help the problem. So,
viewing this scheduling problem as simply a packing problem,
adhering to its rule of thumb “pack large items first” may help

3In this section we mean by a “bad” example a problem instance where
the heuristic will lead to very bad results.
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in our case. Adopting such a quite intuitive judgement,Alg2
schedules RBs with largest metric value first, with the idea that
later, RBs with small value may only do so much damage. And
in fact, this approach can lead to an optimal result on the bad
example in Figure 5, with nicely avoiding a snare in preceding
RBs in order.

However, the contiguity constraint makes this problem much
harder than the well-studied packing problem; it is uncertain
how our action should be in the case that, for a certain user
i a candidate RB is not adjacent to RBs already assigned to
i (e.g. RB3 is first assigned toi, then the next largest value
one is RB5 of i. If RB4 is already assigned to other user,
then the contiguity constraint prohibitsi from being assigned
to RB5. Should we however assign RB5 to i if RB4 is still
unoccupied?). Strictly adhering to the argument “pack large
items first”,Alg2 assigns those candidate RBs anyway unless
it clearly violates the contiguity constraint (i.e. it assigns RB5
to i).

Algorithm 2 : largest-metric-value-RB-first
1: Let V be the sorted list of all the metric valuesλc

i in
decreasing order

2: Let S be the set of not-yet-assigned RBs
3: k ← 1
4: while S 6= ∅ do
5: pick RB c with kth largest metric valueλc

i ∈ V , c ∈ S
6: Let I be RBs already assigned to useri
7: if none is yet assigned to RBs betweenI andc then
8: Let C′ be all RBs located betweenI andc
9: C′ = C′ ∪ {c}

10: assign all RBs∈ C′ to useri
11: S = S − C′; V = V − {λC′

i }; k ← 1
12: else
13: k ← k + 1
14: end if
15: end while

The price we pay for this a bit aggressive strategy is that
we have to assign all the “in-between” RBs to a candidate
user (i.e. it assigns RB5 to i, which as a result comes with
assignment of RB4 to i, since i is already assigned RB3).
The downside of this approach comes from this by-product
assignment. Since the length of such “in-between” RBs is
arbitrary, a potential improvement in those RBs is likely tobe
cancelled. Figure 6 exemplifies such a case (this also shows
Alg2 cannot give an approximation). Assignment of userA
to the largest value RBs (each in the end sides) obstructs
assignment of userB on the “in-between” RBs, which would
otherwise greatly improve the result. It turns out thatAlg2’s
strategy is too aggressive to attain the potential multiuser
frequency diversity gain, which incurs performance penalty.

L L0 L LLL ...L

0 01 0 000 ...0

user
RB

A

B

OPT = L*(m-2) + (L+1)

Alg2 = (L+1)*2

L+1

L L 0LLLL

0 0 0 0 0 0 L+1

m - 1

2
˜̃

Fig. 6 Bad example (2 users,m RBs) for Alg2. Dark-colored RBs
represent a resulting assignment byAlg2. L is a very large number.

C. Alg3: riding peaks

Learned lesson from the drawback ofAlg2, we would like
to utilize each user’s high valued RBs as much as possible.

Let’s look at the PF metric values (λc
i(t) = rc

i (t)/Ri(t)) at
time slot t. One key observation is that, for each useri the
denominator (Ri(t)) is constant for all RBs, so the resulting
value for each RBc is dominated by channel rate (rc

i (t)) only
scaled down/up to the current service rate. Thus, at time slot
t each user’s RB values fluctuate exactly as the channel rate
changes between RB to RB. However, another fundamental
physical layer characteristic is that in multi-carrier systems
the channel SNR values (i.e. CQI) are correlated in both time
and frequency (depending on the Doppler effect and the delay
spread) [12], [20], [23]. In other words, if for each useri RB c
has good channel rate, then the neighboring RBs (c−1, c+1)
have high channel rate as well with high probability4.

So the key idea ofAlg3 is to “ride users’ peaks” in
frequency domain, by exploiting such correlations. Recallthat
the conventional PF algorithm rides peaks in time domain.
Alg3, in fact, extendsAlg2’s rule of thumb: 1) look at large
value RBs first; 2) make them augmented by one neighbor
RB. This second rule enforces a bit conservative contiguity
condition (i.e. for a certain useri a candidate RB must be
adjacentto RBs already assigned toi).

We first have all metric valuesλc
i sorted in decreasing order,

then pick the largest value element (i.e. a user-RB pair) that
does not violate the adjacency augmentation rule. This makes
the algorithm much sensitive to the metric value fluctuation
among RBs. In the bad example of Figure 6,Alg3 can attain
an optimal result by allocating the contiguous high value RBs
to userB (userA will be assigned to only one of end side RBs,
since they are not adjacent each other). Figure 7 illustrates the
“peak riding” ofAlg3. In the beginning userA is first assigned
to its high value RBs, while userB andC are assigned to their
peak RBs a little bit later. In the end they are all assigned to
the RBs around their peaks according to the rules. Note that
Alg2 fails to allocate userB to its high value RBs, sinceB’s
peak RB is surrounded by a bit higherA’s peak RBs.

4A time-delayed channel model for the duration of an SC-FDMA symbol is
given by a channel vectorh. By adding the cyclic prefix, channel in frequency
domain is given byHf = FT (h). Normally the number of subcarriers,N , is
much larger than the number of resolvable paths,L. Hf hasN elements that
are made by linear combination ofL independent random variables. Hence,
at most onlyL of them are independent, and the rest can be written as linear
combination (correlation) of others.
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Fig. 7 Alg3 rides peaks.
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Algorithm 3 : riding peaks
1: Let V be the sorted list of all the metric valuesλc

i in
decreasing order

2: Let S be the set of not-yet-assigned RBs
3: k ← 1
4: while S 6= ∅ do
5: pick RB c with kth largest metric valueλc

i ∈ V , c ∈ S
6: Let I be RBs already assigned to useri
7: if (c is adjacent toI) or (I = ∅) then
8: assign RBc to useri
9: S = S − {c}; V = V − {λc

i}; k ← 1
10: else
11: k ← k + 1
12: end if
13: end while

This “peak riding” approach so far seems quite good. There
exist, of course the cases where it can lead to very bad
solutions. If for a certain user the channel rate across RBs
changes arbitrarily, then sticking to peaks is not likely a good
strategy. As mentioned earlier, we however can find typical
instances displaying the frequency-domain correlation among
RBs, and in fact, this approach can lead to a measurable
improvement on both throughput and short-term fairness in
the realistic UL SC-FDMA scenarios as shown in Section V.

Figure 8 shows an bad example forAlg3, which also
demonstrates it cannot give an approximation. In this example
we assign userA andB to their peak RBs with the frequency-
domain correlation in mind (i.e. in the hope that theiradjacent
RBs also have high metric values), but no such correlation here
leads to a very bad solution.

L L0 L LL ...L

0 01 0 000 ...0

user
RB

A

B

L+1

0 00000

0 L L L L L

L+1

L

OPT = L*(m-1) + 1

Alg3 = (L+1)*2

m - 1

2

L

0 0 0 0 0 0

˜̃

Fig. 8 Bad example (2 users,m RBs) for Alg3. Dark-colored RBs
represent a resulting assignment byAlg3. L is a very large number.

D. Alg4: RB grouping

Given that the frequency domain exhibits a correlation
(more precisely, correlation between two adjacent RBs),Alg3
is expected to yield good performance. As mentioned in
Section IV-C, the channel quality values are indeed correlated
in both time and frequency. However, in general the correlation
in the frequency-domain is not as strong as the one in the time-
domain (frequency-selective fading distortion) [20], [21]. That
implies that we have the overall frequency correlation but its
granularity may not be as small as one RB (i.e. the smooth
lines in Figure 7 may need to be changed to the uneven ones).
Figure 9 (overall fluctuation similar to Figure 8 but with some
jitters) shows that such a condition incurs poor results byAlg3.
SinceAlg3 relies on the strong frequency-domain correlation,
it is easily cheated by the small-scale variation. In the figure,
userB is falsely assigned to the abrupt peak, userA is trapped
by the sudden drop, and in the end userC expands its region
to that point.
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Fig. 9 Alg3 suffers from small-scale variation.

To deal with such small-scale variation, it would help to
extend our unit of consideration (i.e. the number of contiguous
RBs that we view at a time). In the example of Figure 8 and
9, if we consider a group ofx contiguous RBs (sayx = 3)
instead of one RB, then we have a wider view enough to obtain
an optimal solution. Thus, this RB grouping seems helpful
to catch a bit large-scale fluctuation.Alg4 makes use of RB
grouping to manage the weak frequency-domain correlation.
The following questions may arise: “how big should a group
be?”, “is it a variable size?”, and “freedom of positioning?”.
The harder we try to set up good criteria regarding those
questions, it becomes more a quagmire due to the NP-hard
nature. Here we set up simple rules: 1) dividem RBs inton
groups; 2) apply the “peak riding” over those RB groups. Thus,
Alg4 is an RB-grouping version ofAlg3; Alg4 “rides peaks”
with the granularity of RB groups (one group =⌈m

n
⌉ RBs).

Notice that asn (i.e. the number of users) grows, the group
size gets smaller (i.e. we see the smaller-scale fluctuation). As
a ground for our choice of⌈m

n
⌉, we argue that it would be

beneficial to see the small-scale fluctuation with large number
of users, since high multiuser frequency diversity can facilitate
the potential improvement from the small-scale peaks.

One can easily find a bad example forAlg4 and its
inapproximability as well (example structure is similar to
Figure 8). However, such extremely bad instances are unlikely
to happen in practice, and in fact,Alg4 exhibits constantly
better performance overAlg3 on the real traces, particularly
when the number of users is not large (asn grows,⌈m

n
⌉ RBs

becomes 1 RB).

V. SIMULATIONS

To evaluate the performance of our heuristics, SC-FDMA
uplink system level simulations have been conducted based
on 3GPP LTE system model. We use traces generated as
specified in 3GPP deployment evaluation [2], based on Typical
Urban channel model. Table 1 summarizes a list of the default
simulation parameters and assumptions.

We analyze the performance of the algorithms in terms of
throughput as well as short-term fairness5, and assess how
well they emulate the proportional fair criteria in this FDPS
setting. However, since it is NP-hard to optimize objective
(1) under the contiguity constraint, we do not have such an
optimal algorithm in our hand. Thus, we use an algorithm that

5A well-known problem of the conventional time-domain PF scheduling is
its poor short-term fairness.
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TABLE I Simulation parameters

Parameter Setting

System bandwidth 20 MHz
Subcarriers per RB 12
RB bandwidth 180 kHz
Number of RBs 96
Cell-level user distribution Uniform
Number of active users in cell 10, 20, 30, 40, 50
Traffic model Infinitely backlogged
Transmission time interval (TTI) 1 ms
Channel model Typical Urban
User speed 3, 30, 120 km/h
User receiver 1x2/MMSE/ZF
Modulation/coding rate settings QPSK: 1/3, 1/2, 2/3, 3/4

16QAM: 1/2, 2/3, 3/4
HARQ model Ideal chase combining
HARQ Aak/Nack delay 8 ms
Max. number of HARQ retransmission 3

optimizes objective (1) without the constraint as our reference,
and we refer to this algorithm asOPT ∗. Note that, as shown
in Lemma 2,OPT ∗ offers an upper bound of the optimum.
We use Jain’s fairness index [14], measured by the data-rate
fairness criterion6:

Fφ(∆t) =
[
∑N

i=1 φi(∆t)]2

[N ·
∑N

i=1 φi(∆t)2]
,

whereφi(∆t) denotes the actual data-rate useri achieved in
time interval∆t, with N users in the system.

We first measure the system throughput of our algorithms
with varying the number of active users in the cell. As shown
in Figure 10(a),Alg4 results in the highest throughput among
our heuristics, followed byAlg3, Alg2, andAlg1. This trend
seems to match with our expectation, sinceAlg4 and Alg3
contain more advanced heuristic idea than the other two. In
general,Alg3 performs better thanAlg1 and Alg2 because
Alg3 seeks to take advantage of each users’ peak while both
Alg1 and Alg2 are not so fine-tuned enough to effectively
utilize multiuser frequency diversity. However, as seen from
Figure 10(a),Alg3 displays the poor performance with small
number of active users (e.g. whenn = 10, it yields even
lower throughput thanAlg1 and Alg2). Such a result shows
the implication of the weak frequency-domain correlation,by
which Alg3 is easily misled into bad solutions. On the other
hand,Alg4 contantly outperforms the other three algorithms
in all scenarios.Alg4 deals with this small-scale variations by
widening its view to⌈m

n
⌉ RBs. In the case of small number of

active users,Alg4 expands the RB-group size, and it rides each
users’ aggregated peak by catching a bit large-scale fluctuation
(it attains 84% ofOPT ∗ while Alg3 gets 77%.). Asn grows,
Alg4 adaptively lessens the view so as to exploit the small-
scale fluctuation, and its performance gets similar toAlg3
(when n = 50, Alg4 and Alg3 reach 95% ofOPT ∗ while
the other two get around 86%). It is worth stressing again that
OPT ∗ does not represent the optimum of our objective but
simply shows an upper bound of it, where the actual optimum
lies betweenAlg4 andOPT ∗ in general.

We now evaluate the short-term fairness of our algorithms

6Fφ(∆t)=1 implies that all users received equal data-rate within time∆t.

25

30

35

40

45

10 20 30 40 50

Number of active users in cell

S
y
s
te

m
 t
h
ro

u
g
h
p
u
t 
[
M

b
p
s
]
  

  
  

  
 .

  
 .

OPT*

Alg1

Alg2

Alg3

Alg4

(a) cell throughput

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

Number of active users in cell

F
a
ir
n
e
s
s
 [

t=
2
0
m

s
]
  
 .

  
  
.

OPT*

Alg1

Alg2

Alg3

Alg4

(b) fairness index (t=20ms)

Fig. 10 System throughput and fairness with varying num. of users
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Fig. 11 Short-term fairness with varying time interval

with varying the number of active users. Figure 11(a) shows
the short-term data-rate fairnessFφ(∆t), in the cell of 30
active users, with extending the time interval window∆t from
10 ms (i.e. 10 TTI) to 50 ms. In this setting,Alg3 consistantly
outperforms other algorithms in all intervals, followed by
Alg4, Alg1, and Alg2. To understand whyAlg3 provides
better short-term fairness than others in this setting, we record
the number of users scheduled per one TTI for each algorithm.
Figure 12(a) plots the average number of users scheduled per
one TTI when 30 users are active in the cell. We can see that
all of 30 users are likely assigned to all 96 RBs byAlg3 and
Alg1.7 However, the crucial difference is thatAlg1 is likely to
allocate arbitrary rate on each user whileAlg3 seeks to assign
users their peak RBs, which helps short-term “fair share” of
the frequency resource. Figure 10(b) presents the short-term
fairness of 20 ms interval window with increasing number of
active users. Interestingly,Alg1 offers the best fairness when
the number of users is large (e.g.n = 50). See also Figure
11(b) and 12(b) for fairness and the average number of users
scheduled per a TTI with 50 users. With the large number of
users,Alg1 is able to balance users’ rates, but those are not
likely from peak RBs.

At this point we note that comparison by each single metric
separately, however, does not provide us much meaningful
insight on the performance. Moreover, achieving both high
throughput and fairness is a somewhat conflicting goal in
general. For example,Alg1 performs even better thanOPT ∗

in terms of the short-term fairness whileOPT ∗ yields 127%
greater throughput overAlg1. Hence, we need to compare the
algorithms by a comprehensive metric that takes both through-
put and fairness into account. Such a balance is pursued by the
proportional fair criteria (i.e. maximizing

∑

i log Ri, whereRi

is the long-term service rate for useri), which in fact is our

7This result seems quite intuitive in the sense thatAlg3 and Alg1 make
assignment decision on one single RB at a time whileAlg2 andAlg4 assign
potentially multiple RBs to a certain user at a time.
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Fig. 12 Average num. of users scheduled per 1 TTI

ultimate objective function. We recall that the conventional
PF algorithm optimizes the proportional fair criteria so that
it maximizes long-term throughputs of the usersrelative to
their channel conditions, and our main goal is to maximize
the PF criteria in the FDPS context. Now we assess how well
our heuristics emulate the proportional fair objective in our
problem framework. In the following table we show the values
of the PF criteria with 30 active users in the cell.

∑

i log Ri

OPT* 223.1
Alg1 216.5
Alg2 218.9
Alg3 220.6
Alg4 221.6

We can see thatAlg4 has the highest value of
∑

i log Ri,
followed by Alg3, Alg2 andAlg1. We obtain the same trend
(with similar gaps between values) in all other scenarios.
As we underlined earlier,OPT ∗ simply represents an upper
bound of the optimum of our objective, so the actual optimum
has a value of

∑

i log Ri betweenAlg4 andOPT ∗. Therefore,
among our heuristicsAlg4 has the value of the PF criteria
closest to the actual optimum, and it emulates best the PF
criteria in UL FDPS setting.

VI. CONCLUSIONS

Due to its single carrier property of SC-FDMA, LTE UL
requires the RBs allocated to a single user to be contiguous
in frequency. In this paper we explored this fundamental
problem of frequency-domain scheduling under contiguous RB
allocation constraint. We investigated how to adapt the time-
domain PF algorithm to this problem framework. We first
showed the NP-hard nature of this problem, then presented
a set of practical algorithms fine tuned to this problem.
Among them, an algorithm that exploits the frequency-domain
correlations in concert with an adaptive RB grouping technique
emulates best the PF criteria in the LTE UL FDPS context.

Finally we believe that no practical wireless scheduling al-
gorithms can give an approximation to this particular problem,
but whether there actually exists such an algorithm or not still
remains as an open problem.
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APPENDIX

A. Proof of Lemma 1
Proof: First, we consider the number of possible ordering

whenk users are assigned tom RBs under the contiguity con-
straint wheren ≥ m (i.e. the number of users is greater than
that of RBs). We initially pre-positionk users in sequence:
n(n− 1)(n− 2) · · · (n− k + 1) =

∏k−1
j=0 (n− j).

With keeping those orders, we fill the remainingm−k spots
by adding some of thosek users under contiguity constraint.
We havem spots andk users, which is represented by a
positive integer-valued vector(x1, x2, · · · , xk):

x1 + x2 + · · ·+ xk = m xi ≥ 1, i = 1, · · · , k

So, there are
(

m−1
k−1

)

distinct vectors satisfying the condition.

Hence, the number of possible ordering is:
(

m−1
k−1

)
∏k−1

j=0 (n−
j). We have1 ≤ k ≤ m (we cannot assign more thanm users
at a time) users, so the total search space is:

T (n, m) =

m
∑

i=1

[

(

m− 1

i− 1

) i−1
∏

j=0

(n− j)

]

= O(nm)

In the case whenn < m, we have1 ≤ k ≤ n users available
to be scheduled, then the total search space is:T (n, m) =
∑n

i=1

[

(

m−1
i−1

)
∏i−1

j=0(n− j)
]

= O(n!)


