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Abstract—This paper addresses the problem of frequency user in each subframe and can perform rate adaptation by usin
domain packet scheduling (FDPS) incorporating spatial diision  adaptive modulation and codif@MC) in different subframes

multiplexing (SDM) multiple input multiple output (MIMO) i ;
techniques on the 3GPP Long Term Evolution (LTE) downlink. [5]. Such fastchannel dependent scheduliigboth time and

We impose the LTE MIMO constraint of selecting only one freque_ncy domain mult_lplexmg is referred to &eq_uency-
MIMO mode (spatial multiplexing or transmit diversity) per ~domain packet scheduling-DPS) [15]. Recent studies [15]-
user per transmission time interval (TTI). First, we address the [17], [21] have shown potential gains in system capacity of
optimal MIMO mode selection (multiplexing or diversity) per up to 40-60% over time-domain only scheduling.

user in each TTI in order to maximize the proportional fair ‘i : _
(PF) criterion extended to frequency and spatial domains. W Another promising technology for LTE is the use of mul

prove that the SU-MIMO (single-user MIMO) FDPS problem _tlple input multiple OUtpl_Jt_ (MIMO)_antenngs th"_ﬂ can fgrrthe
under the LTE requirement is NP-hard and therefore, we Improve the spectral efficiency gain by usispatial division
develop two approximation algorithms (one with full channd multiplexing [3]. Multiple antennas allow for an additional
feedback and the other with partial channel feedback) with degree of freedom to the channel scheduler. Different MIMO

provable performance bounds. Based on 3GPP LTE system gohemes are considered in the 3GPP standard depending on
model simulations, the approximation algorithm with partial

channel feedback is shown to have comparable performance to the spatial domain user selection over _|nd|V|duaI RBs. [8ing
the one with full channel feedback, while significantly redging user MIMO (SU-MIMO) has the restriction that only one user
the channel feedback overhead by nearly 50%. can be scheduled (as either transmit diversity mode oradpati
multiplexing mode) over each RB. Multi-user MIMO (MU-
MIMO) offers greater spatial-domain flexibility by allowgn
The Third Generation Partnership Project (3GPP) Longifferent users to be scheduled on different spatial steeam
Term Evolution (LTE) standardization efforts aim at develever the same RB. In this paper, we focus on the SU-MIMO
oping future cellular technologies in order to improve spEdc scheduler.
efficiency and coverage while reducing costs [1]. Orthogiona In order to achieve large MIMO FDPS gain by exploiting
Frequency Division Multiple Access (OFDMA) has beermpatial, frequency and multiuser diversity, the schedoésds
selected for LTE downlink (DL) radio access scheme due to know the instantaneous radio channel conditions acrbss a
its robustness to multipath fading, higher spectral efficje users, RBs, and spatial streams for all the available MIMO
and bandwidth scalability. Multiple access in DL OFDMAmodes. Hence, with full CQI feedback, each user reportethre
is achieved by assigning different frequency portions & thCQIs per RB; one for single-stream diversity mode and one
system bandwidth to individual users based on their exjstieach for the two individual streams for dual-stream spatial
channel conditions. In LTE DL, the system bandwidth imultiplexing MIMO mode [19], [20].
divided into multiple subbands (i.e. groups of subcarjiers A straightforward approach for MIMO-FDPS is to select
denoted agesource blockgRBs). A resource block is the the best user and corresponding MIMO mode (tx diversity
minimum scheduling resolution in the time-frequency damaior multiplexing) for each individual RB independently by
In order to schedule resources to the different users on ttensidering a single RB in isolation regardless of other’'RBs
downlink, the base station (or eNodeB) needs channel guaklitssignment status. However, such a scheduling strategytan
reports from the individual users. The feedback reportmfrobe employed in the 3GPP LTE system which constrains down-
the individual terminal users to the base station are sentlink transmission to each user terminal to only one MIMO
the form of achannel quality indicator(CQIl). A CQI is mode within each TTI (all RBs in a subframe assigned to an
an estimate of the downlink channel at the individual useisdividual user is transmitted either using transmit déitgr
and is obtained using reference signals transmitted fraam tbr by using spatial multiplexing) in order to reduce signgli
base station. The packet scheduler at the base stationhese®terhead [3], [4]. Therefore, the LTE DL MIMO FDPS
CQI feedback from individual users to perform an RB to useilgorithms need to incorporate this MIMO mode constraint
assignment every transmission time interval (TTI of 1ms wwhile trying to maximize the scheduling objective.
LTE) according to the base station selected schedulingyoli In this paper, we address the fundamental MIMO-FDPS
The scheduler also determines the data rate to be used for gaoblem of performing an optimal (depending on the schedul-

I. INTRODUCTION



ing objective) RB to user mapping over the entire set ofhile the transmit data sizef ;(¢) for multiplexing MIMO

resource blocks available at the downlink along with an addnhode is generally larger than the one for diversity mode (i.e

tional constraint of restricting the transmission of ak tRBs  r{ /() > r{ (t)) due to its dual-stream spatial multiplexing

selected for an individual user in a TTI (1ms) to one MIMOransm|SS|on Thus, i{ ;(t) = 1, then user has areffective

mode. We analyze this problem by adopting the well-knowaata rate ofi¢ ;(¢) for RB ¢ with MIMO mode j at time

time-domainProportional Fair (PF) algorithm to maximize instancet. !

the proportional fair criteria in the MIMO-FDPS setting. &h

main goal of this paper is to extend the time-domain Pg: Problem Formulation

algorithm to this problem framework by incorporating the In the time-domain, the well known Proportional Fair

additional frequency and spatial dimensions. (PF) algorithm [12], [18] aim to maximize over all feasible

scheduling rules, the utility functioh_, log R; (known as as

A. The Model proportional fair criteria), whereR; is the long-term service
We consider a cellular network with a single base statigate of user, and updated according to:

and n active wireless users, each with two transmit and . )

two receive antennas (i.ex2 MIMO antenna scheme). The R;(t + 1) = { (1 - a)Ri(t) +ari(t)  if useri scheduled

system bandwidth is divided intaw RBs i.e., the base station (1= a)Ri(t) otherwise.

can allocaten RBs to a set of users. At each time instancewherer; (t) is the channel rate for us¢randa is a time con-

multiple RBs can be assigned to a single user (with thgant typically on the order of 1000 slots (e.g. 1/1000).rteo

only one MIMO mode constraint), each RB however cap maximize}_, log R;, one should maximiz&_, d;(t)/R:(t)

be assigned to at most one user (as single-stream diversityered; (t) is total data transmitted to useat timet (proven

mode or dual-stream spatial multiplexing MIMO mode). liin [6], [14], [18]). Hence the time-domain PF algorithm ajsa

this paper we assume anfinitely backloggedmodel, i.e. at serves the user who maximizegt)/R;(t) at each time step

each time instance, the base station has data available #foNote that the PF algorithm achieves high throughput and

transmission to every user. Thus, the base station can@eheehaintains proportional fairness amongst all users by givin

all them RBs at every time instance (i.e. TTI of 1 ms in LTE) priority to users with a high-quality channel rate (¢)) and
We define the indicator varlablg (t) to indicate whether a low current average service rate; (t)). In this way the PF

or not RB c is assigned to user with MIMO mode j (D: scheduler strikes a good balance between overall throughpu

Diversity, M: Multiplexing) at time instance We assume that and fairness.

the channel conditions vary across different RBs and for dif \We now extend the time-domain PF algorithm for the

ferent users. The channel conditions vary with time, fregye MIMO-FDPS scheduler by taking into account the extra

(e.g.frequency selective multipath fadingnd user location. frequency and spatial dimensions. We again aim at maximizin

Therefore, each RB has a correspondisgr-dependerand the utility function 3. log R; where the objectiveR; is

time-varyingchannel condition that is represented by the CQipdated according to:

for that user over that RB. Let ;(¢) be the transmit data size

for user; with MIMO mode j on RB¢ at timet, which can be Ri(t+1)=(1-a)R;(t) + Oéz Z% ;@) -7 4(

calculated from the CQI feedback. The feedback from a user

consists of three elements per RB: rank index (RI), prea@diNote that R; is updated with the effective data rafg ; (t)

matrix index (PMI), and CQI(s) itself [3]. We assume that thixstead of the transmit data sizg;(t), since we aim to make

base station estimates the Slgnal to noise ratio (SNR) om eqdge best use of MIMO Channe|s by exp|0|t|ng the d|Ver5|ty-

spatial RB for each user based on the user feedback. multiplexing tradeoff, which is represented by the effeeti
Let p.,p(SNR) and p. »(SNR) be the block error rates gata raters . (t).

(BLER) corresponding to the estimated SNR for a given CQI |et X6 (") = 7¢;(t)/Ri(t) be thePF metric valuefor user

using transmit diversity and spatial multiplexing, respesty. ; on RB¢ and MIMO mode; at time instance. Based on the

The SNR-BLER modeling for different MIMO transmissionwork in [9], we define a MIMO FDPS version of PF objective
schemes can be obtained by prior link-level simulations amghction at time instance as follows:
made available at the base station. In an effort to make the

optimal use of MIMO channels, we utilize the concept of max» N> af (A (D) 1)
effective data rate; ; (), which takes into account the transmit ioc je{D,M}
data sizerf ;(t) and the BLER for usef for MIMO mode j It is fairly straightforward to see that objective (1) maxi-
on RBc at time¢: mizes ", d;(t)/R;(t) at time stept, and therefore achieves
P8 = 18 (8) x (1 — P, j(SNR)) proporti_onal fair_ness, i.e. optimizing o_bjective (1) nmaxies
’ the utility function )", log R; in the time, frequency, and

Note that for a given userand RBc, the effective data rate spatial domain context. For this reason, a straightforward
¢ ;(t) shows adiversity-multiplexing tradeoff22] since the approach for MIMO FDPS scheduling is to apply the PF

diverS|ty mode offers more reliable transmission (i.e. dow algorithm directly over each RB one-by-one, i.e. for REhe

BLER) for the same modulation and coding scheme (MC®) algorithm selects the best user and corresponding MIMO



mode (tx diversity or multiplexing) maximizing ;(¢)/R;(t) criterion extended to frequency and spatial domains. \Weeoro
at time slott. However, for LTE DL MIMO FDPS scheduling that the SU-MIMO FDPS problem with the only one MIMO
we need to incorporate the additional constraint of usinly ormode constraint is NP-hard. We develop two approximation
one MIMO mode per user per time instance. Accordinglalgorithms (@Alg1 with full channel feedback andlig2 with

we can rewrite the objective (1) as the following optimieati partial channel feedback) with provable performance bsund

problem: Using 3GPP LTE system model simulations, we show that
both algorithms offer measurable throughput gains ove? 1
maXZZ Z i AL (1) sSIMO FDPS-only scheduling. However, the short-term fair-
i¢ je{Db,M} ness of the FDPS-only scheduling is better compared to the
subject to SU-MIMO FDPS scheduling algorithms. Finally, we show
ZZ £ <1 Ve ) that althoughAig2 has partial feedback information (nearly
; je{p,my " =7 50% feedback reduction compared Adg1), its performance
ZZZI%‘ <m 3) is comparable tdig1.
i ¢ g Il. HARDNESSRESULT
i#i, Vel afp=a5,,=1 (4  In this section, we first show that the SU-MIMO FDPS
2, €{0,1) (5 problem is NP-hard and hence, we cannot find an efficient

algorithm that optimizes objective (1) under the only one
To simplify notation, the dependence on timds omitted. MIMO mode constraint unless P = NP. We then demonstrate
Constraint (2) states that each RB can be assigned to at ntbst the search space for the above problem is quite large
one user either using transmit diversity or spatial mugtjpdg. making it computationally intractable for practical syate
Constraint (3) denotes that the system has the totatnof I
RBs. Constraint (4) ensures that only one MIMO mode (i.é' Hardness of o_bpctwe (1)
diversity or multiplexing) can be selected for a single user FOr our reduction, we present the NP-complete problem
across different RBs for that user for each time instancthign called 3-Satisfiability or 3-SAT[13]:
paper, we explore the fundamental nature of this MIMO-FDPS e Given a set of clauses;, .. ., Cy, each of length 3, over
problem by seeking an efficient algorithm that maximizes @ set of boolean variable¥ = {1,...,z,}, does there
objective (1) while satisfying constraints (2)-(5). exist a satisfying truth assignment?

In 3-SAT, aclauseis simply a disjunction of 3 distinct terms
C. Related work (i.e.t; Vity Vits, each termt; € {x1, @2, ..., 20, 71, ..., Tn )

The Proportional Fair (PF) algorithm was introduced in [12find atruth assignmenfor X' is an assignment of the value 0

[18] and has been extensively studied in the research cofi-1 to eachr;. An assignmensatisfiesa collection of clauses

munity [6]-[8], and is widely used as a standard scheduliffgi, - - -, Cr if it causes all of theC’; to evaluate to 1 under the
algorithm in the current wireless systems such as CDMA 200@les of Boolean logic (i.e. the conjuncti@i ACz A... ACy
1xEV-DO [10], [12]. to evaluate to 1).

The FDPS scheduling research is still in a preliminary Theorem 1:LTE SU-MIMO PF-FDPS problem (i.e. max-
stage, and most studies directly adapt the time-domain [Pization of the PF objective (1) under the only one MIMO
algorithm into frequency-domain context. Results showt thE10de constraint) is NP-hard.
the FDPS promises up to 40-60% gain over time-domain Proof: We reduce 3-SAT to our problem, and our re-
only scheduling [15]-[17]. Moreover [21] shows that théluction will be based on viewing an instance of 3-SAT as a
frequency selectivity of FDPS significantly improves theish S€arch over ways to choose a single term (to be satisfied) from
term fairness (a well-known problem of the conventionaktim €ach clause, subject to the constraint that one must nosehoo
domain PF scheduling is its poor short-term fairness). conflictingterms from different clauses. _

There have been very few research results on extendind® decision version of our problem is to determine whether
the FDPS algorithm using the additional spatial degree f# & given frequency and spatial domain stagu§.e. a col-
freedom by incorporating multiple antennas at the trartemit |Ction of valuex7 ; across all users, RBs, and MIMO modes),
and receiver. In [19], the authors raise the issue of th@ere exists an allocation strategy that satisfies the ongy o
MIMO mode constraint in LTE and proposed a couple d"IMO mode constraint and results in an aggregat_e value
simple heuristic algorithms. However, they provide naith@t !€astw. We construct our problem instance in which the
the analysis on the hardness implication of this problem, ngXistence of a satisfiable allocation strategy for our pobl
theoretical performance bounds of the algorithms. In [20f€Pends on the existence of a satisfying truth assignment fo

signaling reduction methods are proposed to mitigate the C&3-SAT instance. _ _ _
reporting overhead in the context of MIMO-FDPS. Consider an arbitrary instance of 3-SAT, withvariables

In this paper, we extend the LTE FDPS scheduling algd?: - - -+ %n andk clausesCs,. .., Cy. We first construct our
”thm to |_nc0rporate the MIMO m_Ode selection (dlyer5|ty or 1yye say that two termsonflict if one is equal to a variable; and the
multiplexing) per user in each TTI in order to maximize the PhBther is equal to its negation;.



diversity multie[exing 0. By constructing in this way, all the clauses in the 3-SAT

A . .
3-SAT ‘ N7 N instance will evaluate to 1. n

B. Computational intractability in practice

Ci= (X1 VXV X3)

Since we have proved in Theorem 1 that optimizing objec-
tive (1) is NP-hard, one might be tempted to optimize obyecti
(1) by a “brute-force” search. Such an approach may work
fine on relatively small-sized input using high computasibn
power. That is, even though the problem itself is NP-hard, we
Fig. 1. The reduction from an example 3-SAT instance cangistf 4 may solve the problem by trying all possible user and MIMO
variables a_nd 4 clauses (i.e. = k = 4). _Dark-_colored 'RBs represent the mode combinations if the size of the typical instance is §mal
corresponding 3-SAT terms that appear in their matchingseia. To examine whether or not brute-force search is practical, w

p ,
first evaluate the running time of brute-force search fos thi
) ) ) problem.
frequency and spatial domain status instascas follows. Lemma 1: The running time of brute-force search for opti-

A user in 5 corresponds to each variable in 3-SAT. MOre,i;ing objective (1) under the one MIMO mode constraint is
specifically, for each variable; and its negatiorx;, we have O(n™) if m > n, andO(m™) if m < n. (n users;n RBs)

a useru; for diversity modeu; p and for multiplexing mode 1 proof is given in the Appendix.

u;,n, respectively. An RB inS' matches with each clause in |, "oractical systems, both the number of userand the

3-SAT. Thus, we have users and: RBs as shown in Figure ,, nher of RBen can be quite large. For example, 3GPP LTE

1. Since at most one user can be selected for each RB, i§ease 8 supports a scalable bandwidth of 5, 10, 15, and 20

achieves our goal of choosing a single term in each clause tRg (corresponding to 25, 50, 75, and 100 RBs, respectively)

will evaluate to 1. However, we still need to explicitly emeD 3} Fyrthermore, channel bandwidth up to 100 MHz (nearly

the conflicting terms in a 3-SAT instance. 500 RBs) is being considered for LTE-Advanced. Moreover,
We now assign the scheduling metric valugs; in our \ve may have at least several tens of active users in a cell.

frequency and spatial domain stattio model the conflicts gyenin a sparse cell (say= 10), it can take several seconds

of a given 3-SAT instance. In our problem formulation, efthgg complete the search (1 oper.1 ns), which is too slow to

transmit diversity or spatial multiplexing mode can be sl schedule data every 1 ms in the real systems. Thus, we cannot
for each user. It turns out that such one MIMO mode constraigbtimize objective (1) in practice either.

is quite natural for encoding the conflicting property of &S
For each RBc, we set){ , = 1 if z; appears in claus€'c; C. Extension to MU-MIMO

similarly, we set\? ,, = 1 if Z; appears in claus€’c, and  Although we do not consider MU-MIMO in this paper, the
Af; = 0 otherwise. Finally, we define the target aggregatgardness result can be naturally extended to the MU-MIMO.
valuew = k, which is the total number of clauses in a given 3- Theorem 2:MU-MIMO FDPS problem (i.e. maximization
SAT instance. This completes the construction of the fraque of gn objective function under the only one MIMO mode
and spatial domain status constraint) is NP-hard.

We claim that our resulting constructios has a feasible Proof: Since different users (under the user-paring con-
allocation strategy with an aggregate value at least and straint with respect to their precoding matrix) can be scihesi
only if the original 3-SAT instance is satisfiable. Indeeld, ion different spatial streams over the same RB in MU-MIMO,
the 3-SAT is satisfiable, then each RBin our domainS the SU-MIMO is a special case of the MU-MIMO. This
can be assigned to at least one usewith MIMO mode implies that MU-MIMO problem is no easier than our SU-
Jj whose metric value\{; = 1. Let I be a set consisting MIMO problem that we have proved NP-hard in Theorem 1.

Co=(X VX3V Xyq)

Ca=(XVXV X)

Cs=(XVX3VXs)

of one such uset; ; for each RB. If two different MIMO ]
modes were selected for a single usemp,u; »s € I, then

the corresponding terms in 3-SAT would conflict but this is Ill. A PPROXIMATION ALGORITHMS

not possible since they both evaluate to 1. The hardness result in Section Il provides a compelling

Conversely, suppose our domdirhas a feasible allocation reason to stop searching for an optimal solution algoritom f
strategyOPT™* with a resulting aggregate value at least objective (1), and rather to pursue developamgproximation
Then, first of all, the aggregate value is exaatlyandOPT* algorithmsthat run in polynomial time and are able to find
must allocate one user(with \{, = 1) for each RBc. We solutions that are guaranteed to be close to optimal.
now claim that there is a satisfying truth assignmentor In this section we present two approximation algorithms
variables in the 3-SAT instance. For each variahleif a user Algl and Alg2 that give constant-factor guaranteed perfor-
1 is not allocated by) PT*, then we arbitrarily set(z;) = 1. mance bounds for objective (1). Interestingly, both aldyonis
Otherwise,OPT™* selects exactly one MIMO mode for userprovide%-approximations for objective (1), whild/g2 makes
i (i.e. u;,p or u; ar) due to our problem constraint. ®PT* use of only a subset of CQI feedback information compared
chooses:; p, we setv(z;) = 1, and otherwise we sef(z;) = to Algl does.



Algorithm 1 : with full-CQI feedback objective isat leastthe original problem optimurd™:
1: /[ Initial user-MIMO mode selection

2: for RBe=1tom do Z(ma.X)\f_j) > T+
3: select the best useras MIMO mode; with largest PR
value X¢ ; ) )
4 end for We now consider the moment whetigl has just made the
5. // Conflict resolution initial user-MIMO mode selection for all RBs, and léf; p
6: Let U be the set of users, each selected as both diversiyd Ki,» be the sets of RBs assigned to uses diversity
and multiplexing MIMO modes on different RBs mode and multiplexing mode, respectively. Sintig1 alwgys
7: while U +# 0 do selects the best user-MIMO mode for each RB during the
8  pick a useri € U initial selection phase, we therefore have,

9: Let K be the RBs assigned to user

100 if Y e A p =D ek Aiar then Z(H}%X /\f,j) :Z Z Aip+ Z Z i

11 assign all RBs: € K to user; as diversity mode c i c€Kip i c€Kim

12 else B . .

13: assign all RBs: € K to user: as multiplexing mode o Z( e; Aip t e; /\ivM) (6)

14: end if v CElyD ceKi m

15 Setl — U —{i} Then, Algl performs the conflict resolution procedure to

16: end while decide the resulting MIMO mode for one such useby the

rule comparing the values summing over all the RBs assigned
for useri; we define such a functiofi(-) by

A. Algl: 1/2-Approximation with Full-CQI feedback

We first presentdigl, a simple two-pass greedy algorithm f(i) = arg Hljax{zce& UK )\f,j} (7)
similar to the one in [19] that utilizes full-CQI feedback as ' ’
an input for decision (i.e. each user reports three CQls PBfius, (i) = D if diversity mode is favored for usei, and

RB; one for diversity mode, the other two for dual-strearfi(;) = M otherwise. We denotg¢(i) as complement of (7).
multiplexing MIMO mode, so that all the PF metric valueso, (7) implies that,

Ai ; are known to the scheduler). The algorithm first makes
one pass through the RBs for initial selection of user-MIMO )\f_f(l.) > Ao~ (8)
mode; when it comes to RB it assigns: to the best useras ZCGK“DUK“M ' ZCGKIVDUK“M i)
MIMO mode j whose PF metric valugs ; is largest for RBc.
This f|_rst-round procgdure can select multlp_le_ _MIMO m_od an upper bound for a certain useBy using Inequality (8),
for a single user on dlfferent RBs. Once the initial selati® _each term above can be bounded by:

done, the algorithm tries to resolve the MIMO mode conflict

for the set of users that are each selected as both diversity Z A

and multiplexing MIMO modes. Lek be the RBs assigned to nP

Equation (6) indicates that] .. A p + > ek, ., Mo

ceEK;,

one such userin the initial selection. The algorithm compares Y . .
the use of diversity mode for usémon those RBs: € K (i.e. < Z Aip + Z AiD
the sum of PF metric values, ., A{ ) and the multiplexing ecKip ek nm
mode (i.e. the sum of values, .., A¢ ;). Then, the useris < > A, + > A, byInequality 8) (9)
forced to use the MIMO mode which gives a better aggregate  ccx,, €Ki m
value.

We now provide an analysis of algorithrig1. Similarly, by applying Inequality (8) on the second term,

Theorem 3: Algl is a %—approximation for objective (1). . . .

Proof: Let 7" denote the aggregate PF value of the 6; Ay < 6; N+ 6; Nsw - (10)
c i, M c i,D c i, M

resulting assignment byligl. We here show thaf’ is not

much smaller than (more preciseby leastone half of) the aAdding up two Inequalities (9) and (10), we get
maximum possible aggregate PF valli¢ by the optimum

algorithm, which we denot®& PT™.
X . ¢ X6, <2 A, . XE
For analysis orupper boungwe first relax the one MIMO D ANpt+ D Mu< ( D Nga+ 2L “f(”)
. . ccK; p ceEK; m ceEK; p ceEK; m
mode constraint to allow multiple MIMO modes to be selected
for a single user, then we can solve the resulting problem for = QZceK_ UK a1 51 (11)
objective (1) in polynomial time (i.e. by selecting the best ' ’
user for each RB regardless of the MIMO mode restriction)ote that in above Inequality (11} ... Uk, )\f_f(l.) is
This can violate our problem constraint but guaranteesithat the resulting aggregate value thély1 assigns for user. Now



we generalize Inequality (11) for every user Algorithm 2 : with Reduced-CQlI feedback
1: /I Initial user-MIMO mode selection

T*SZ( Z )\f,D+ Z /\;?7M> 2: for RBec=1tom do

i €Ki p c€K;ar 3: select the best usaras MIMO mode; with largest
value X7 ; among the reported ones
<> (2 Zcem,DuKi,M /\i,f(i)) 4: end for
g 5: // Conflict resolution
= 22 Z AL (i) 6: Let U be the set of users, each selected as both diversity
i €Ki, pUK:, M and multiplexing MIMO modes
=2T 7: while U # ( do

pick a useri € U

- . N : 8
This immediately impliesT” > %T*, which completes the o | o Kp and K, be the RBs assigned to uséras

pr(\)/sf. How that veis of aldorithaile] n diversity mode and multiplexing mode, respectively
e now show that our analysis of algori is .
essentially tight g ° ! 100 Qe Nip 2 2ucery Mo then
y ught. ) ] 11: all RBsc € Kp U K, to useri as diversity mode

Theorem 4:For any constard > 0, there exists an instance 12: (for RBs ¢ € K, the lowest data rate is selected)
on which Algl achieves at most &/(2 — ¢) fraction of the ;5. g|se
optimal value of objective (1). . . 14: all RBsc € Kp UK, to useri as multiplexing mode

Proof: It is not hard to give an example in which the,g. (for RBs ¢ € Kp, the lowest data rate is selected)

solution by Alg1 is indeed close to a factor df away from ;4. end if

optimum. The example is as follows. We have two ugeed ;7. sety — U — {i}
3, with two RBs in the system. The PF metric values are givefy. and while

by A\l p =2y =1, and\j; , = 1 — . The rest are set to
zero. The optimal algorithm assigns RB1 to ugeand RB2
to usera as diversity mode and multiplexing MIMO mode
respectively. Hence the optimal valueds- . On the other
hand,Alg1 assigns both RBs to user (since\}, ,, > A} 1),
with the resulting value to be 1, which is therefore at most
fraction1/(2 — €) from the optimal. [ |

'mode constraint. Lef{, and K, be the RBs assigned to
user: as diversity mode and multiplexing mode respectively.
The algorithm compares the diversity mode for usen RBs
& Kp (i.e. the sum of PF metric values, ... A p) and
the multiplexing mode on RBs € K, (i.e. the sum of values

B. Alg2: 1/2-Approximation with Reduced-CQI feedback ~2-cc iy Ai.ar)- Then, the user is forced to use the MIMO
, o o . mode which gives a better aggregate value, and is assigned
While Algl with 5-approximation seems a good candida

tor the ideal ZUl-COl feedback Hon. it catk Bn RBs ¢ € Kp U K);. Note that Alg2 cannot compare
or the ideal case of full-CQI feedback assumption, it catkena — X p and o, ore ASy, as in Algl, since

the signaling overhead quite large since each user need ¢ c
gnaiing 9 9 ok, AL pand)_ .. XS, are not known to the scheduler

report CQlIs for all the available MIMO modes. Moreover, thi§; Alg2. Likewise, once useris chosen to use MIMO modg

uplink CQI signaling overhead is a function of the number Q_fn RBsc € K; UK/, then the lowest data rate is selected on

RBs as well as that of active users in the system. Thus, gi; . ¢ f, as a conservative approach (increased reliability)

order to reduce the signaling overhead, we present anothgf.e CQIéfor MIMO mode on RBsc € K are not reported
%-approximation algorithmAilg2, in which each user reportsby useri.

CQI only for the “better effective rate” MIMO mode per RB “\ye now provide an analysis of algorithrtlg2.

at a time, so that a significant amount of feedback signalingrneorem 5: Alg2 is a L-approximation for objective (1).
is reduced at the expense of the additional processing at the p,oof The proof is auite similar to the analysis dfg1.

user side. Now only half of the PF metric valuey; ; (i.e. for Here, we letT be the resulting aggregate PF value 2.

useri on RB c as better MIMO mode; for a certain use¥  aq pefore, we first use the relaxation of the one MIMO mode
the better eﬁ?ctlve da_ta ratg ; implies the better PF metric ., «traint to obtain an upper bound on the optimfim
value A= ;ij/Ri, since R; is constant over all RBs) are

known to the scheduler. Z(max )\f_j) > T
Similar to Alg1, the algorithm first makes one pass through c - W

the RBs for initial select_lon of user-MIMO mople among the At the moment whemdig2 has just made the initial user-

reported ones; for RB, it selects the best uséras MIMO 1Mo mode selection for all RBs, we lek; p and K;

mode j whose PF metric value\{; is largest. Once the pe the sets of RBs assigned to usems diversity mode

|n|t|<_';1I selection is Fione, the algorithm handles a set ofrsisey multiplexing mode, respectively. Note that the resglti

assigned as multiple MIMO modes to enforce the MIMGyjtia| selection by Alg2 is the same as that byllgl since

each user reports CQI for a better MIMO mode per RB (i.e.
2|n order for each user to determine the MIMO mode that resnltsetter P Q P (

effective data rate’¢ (¢) for each RB, BLER tables are known/stored at thé)e'[ter_EﬁeCtiVe data rate) iAlg2. Therefore, during the initial
user terminal as well. selection phaseAlg2 always selects the best user-MIMO



mode for each RB:

Z(@f}“iﬁ—Z( Yo Xpt Y A;?,M) (12)

% ceEK; p ceEKi m

usera as multiplexing MIMO mode. Hence the optimal value
is 2 — . On the other handdlg2 assigns both RBs to user
o as diversity mode (sinc&;, ;, > A2 ,,), with the resulting
value to be 1, which is therefore at mosi A2 — ¢) fraction

Then, Alg2 performs the conflict resolution procedure t®f the optimal value. u
decide the resulting MIMO mode for one such useby the Remark. The performance ofiig2 can be further improved
rule comparing the values summing over only the d|ver5|f%)|/ a more advanced assignment strategy for the KBS/
RBs € K; p and only the multiplexing RBs K; 5, assigned that useri is assigned as MIMO modg without CQ|S
for useri separately we define such a funct@m by for mode j; for example, instead of using the conservative

approach, it may try to select another usewho (i) has the
g(i) = arg maX{Z /\;_:J} best possible CQI for MIMO modgreported on RBg € K/
J ceK; ’
Thus, g(i) = D if diversity mode is favored for user, and

and (ii) does not violate the one MIMO mode constraint over
RBs that:’ is already, if any, assigned. Such a strategy may,
g(i) = M otherwise. We denoteg(i) as complement of(i).
So, (13) implies that,

however, incur another round of iterative optimizationrsba
process.

A oy = A ——
ZCEKi,g(i) i,9(1) = ZCEK o] ,9(1)

(13)

(14) IV. SIMULATIONS

In order to evaluate the performance of the proposed al-
gorithms, we conducted MIMO-OFDMA system level sim-
ulations based on 3GPP LTE system model. We used trace
files generated as specified in 3GPP deployment evaluation
[2], based on the Typical Urban channel model. Table |

Equation (12) indicates that .., A; p+2 cek, o, M
is an upper bound for a certain useBy using Inequality (14),
each term above can be bounded by:

ZceK, _Aip = ZCeK ())\f,g(i) (15) summarizes a list of the default simulation parameters and
’ ot assumptions.
ZceKW < ZceKl o) s, g (16) We analyze the performance of the algorithms in terms of
. . cell throughput, short-term fairness, as well as uplink CQI
Adding up two Inequalities (15) and (16), we get signaling overhead and assess how well they emulate the PF
Z X+ Z A< 2 Z X o (17) criteria in the MIMO-FDPS setting. We use Jain's fairness
€Ky p ’ €K ar M €K g0 9 index [11], measured by the data-rate fairness criterion:
N
. H c i i i At 2
Note that in above Inequality (17}, XS, is the Fy(At) [>oimy #i(At)]

resulting aggregate value (more precisely, ‘the actuakvedun
be larger, sincedig2 assignsat leastthe lowest data rate for
the unreported CQIs.) thatig2 assigns for usei. Now we
generalize Inequality (17) for every user

T*SZ( YooXp+ Y A;M>

P ceEK; D ceEKi M

= Z (2 ZCEKi ,9(i) )\f’g(i))
= Z 2 sty Nt

19()

[V -3 di(At)?)
where ¢;(At) denotes the actual data-rate usexchieved in
time interval A¢, with NV users in the systemFy(At) =1
implies that all users received equal data-rate within tilvie

We first measure the system throughput of our algorithms, as
well as 1x2 SIMO FDPS-only as a reference with varying the
number of active users in the cell. As shown in Figure 2, both

TABLE | Simulation parameters

Parameter Setting
< 2T System bandwidth 20 MHz
.. . . . 1 s . Subcarriers per RB 12
This immediately impliesT” > 357, which completes the RB bandwidth 180 kHz
proof. ] Number of RBs 96
Cell-level user distribution Uniform

We conclude this section by showing that our analysis of
algorithm Alg2 is tight.

Theorem 6:For any constart > 0, there exists an instance
on which Alg2 achieves at most &/(2 — ¢) fraction of the
optimal value of objective (1).

Proof: Here we use a much simpler example than the one
in Theorem 4. The example is as follows. We have only one
usera, with two RBs in the system. The PF metric values are
given by A}, , =1, X2 , =0, and)\aM_)\aM_l—is
The opt|mal algorithm, as well adig1, assigns both RBs to

Number of active users in cell
Traffic model

Transmission time interval (TTI)
Channel model

User speed

User receiver
Modulation/coding rate settings

HARQ model
HARQ Aak/Nack delay

Max. number of HARQ retransmissio

10, 20, 30, 40, 50
Infinitely backlogged
1ms

Typical Urban

3, 30, 120 km/h
2x2/MMSE/ZF
QPSK: 1/4 - 8/9
16QAM: 1/2 - 8/9
64QAM: 2/3 - 8/9
Ideal chase combining
8 ms

n 3
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MIMO-FDPS algorithmsAlgl and Alg2 offer considerable only for the better MIMO mode so that the CQI overhead can
gains in the order of 24-35% over the reference casexdt 1 be reduced to 4 or 8 bits (instead of 12 bits) per RB, depending
SIMO FDPS-only. We also observe thallgl consistently on which mode is favored at each update. Figure 5 shows the
provides a slightly better throughput performance thHp2. simulation result of the average CQI signaling overhead per
Figure 3 and 4 present the short-term data-rate fairAg64¢) update with varying the number of active usefgg2 reduces

in the cell of 30 and 50 active users, respectively by varyirthe CQI signaling overhead by around 50% over the signaling
the time interval windowAt from 10 ms (i.e. 10 TTI) to requirement ofdlg1.3

50 ms. Based on Figure 3 and 4, we observe that both SUA closer inspection of Figure 2 reveals that in spite of the
MIMO-FDPS algorithmsAlgl and Alg2 have similar short- full-CQI utilization, Alg1l displays only marginal throughput
term fairness. However, the short term fairness of SU-MIMQain over Alg2. With increasing number of active users, the
FDPS algorithms is worse compared to FDPS-only algorithiiroughput gain ofdlgl over Alg2 gets smaller (e.g. when
This result seems quite intuitive in the sense that SU-MIM@ = 50, its gain is within 1% overAlg2). To understand
essentially facilitates the peak user data rate improvémen why Alg2 shows similar performance tdigl with a large
only one user can be scheduled each RB with an opportunitymber of users in the cell, we record the number of the RBs
of being decided as dual-stream transmission), while FDP&ssigned to a user with multiple MIMO modes selected by
only tends to promote the average data rate enhancement thatinitial user-MIMO mode selection procedure, and refer
helps to further improve the fairness among users. to such RBs asonflicting RBs. In addition, we trace the

We now estimate the uplink CQI feedback signaling ovePUmber of RBs in which the conflict resolution procedure
head. The resolution for CQI has been decided to be 4 bif§ces & user with conflicting RBs to relinquish the origipal
per RB per spatial stream in 3GPP LTE Release 8 [3]. ﬁialected MIMO mode, and refer to themmhnqw_sh_edRBs.
the simulations, the system bandwidth of 20 MHz is divideiigure 6 and 7 plot the average number of conflicting RBs and
into 96 RBs (each with 180 kHz). Fotlg1 with the full-CQI relinquished RBs per user with multiple MIMO mode selected
feedback assumption, since the CQI is reported for botHeaingin 1 TTI, respectively. It is observed that both conflictinB$R
stream diversity mode and dual-stream multiplexing mode, o _

The feedback reduction is still an open issue yet a key feator

(One C_Ql per Stream)' the CQI Signa“ng require>s 86 x 3= LTE. Further feedback compression techniques such as etavated signal
1152 bits/update/user. On the other haAty2 needs the CQI analysis and long-term based signaling are currently udidetssion in 3GPP.
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compared todigl.

Based on 3GPP LTE framework, simulation results reveal
that the approximation algorithm4igl and Alg2 offer mea-
surable gains in the order of 24-35% over the 21 SIMO
FDPS-only (reference case). Moreovdig2 achieves a CQI
signaling reduction of 50% with only 1-5% performanc
degradation overdigl that requires the full-CQIl feedback. . .
We also prove that the LTE MU-MIMO FDPS problem is NP- n - n -
hard. Future work would entail extending the results presen (n,m) = Z (2) $2 AT 2 z; <z> 201" =0(n")

i

in this paper to develop efficient algorithms for MU-MIMO )
FDPS scheduling. In the case whem < n, we cannot assign more tham users

atatime:(7)-2+4(3)-22---4()-2™. Then the total search
REFERENCES space isT'(n,m) =Y (7)-2"-i™ = O(m™) [
[1] 3GPP TR 25.814 v7.0.0 (2006-06). Physical Layer AspémtsEvolved
UTRA

A. Proof of Lemma 1

Proof: We first consider the number of possible combi-
nation of users to be scheduled (under only one MIMO mode
constraint) in one time slot where > n (i.e. the number of
RBs is greater than that of users}) -2+ (5)-2%- -+ () -2".
Bince we haven RBs, the total search space is:

i=1



