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Abstract—This paper addresses the problem of frequency
domain packet scheduling (FDPS) incorporating spatial division
multiplexing (SDM) multiple input multiple output (MIMO)
techniques on the 3GPP Long Term Evolution (LTE) downlink.
We impose the LTE MIMO constraint of selecting only one
MIMO mode (spatial multiplexing or transmit diversity) per
user per transmission time interval (TTI). First, we address the
optimal MIMO mode selection (multiplexing or diversity) per
user in each TTI in order to maximize the proportional fair
(PF) criterion extended to frequency and spatial domains. We
prove that the SU-MIMO (single-user MIMO) FDPS problem
under the LTE requirement is NP-hard and therefore, we
develop two approximation algorithms (one with full channel
feedback and the other with partial channel feedback) with
provable performance bounds. Based on 3GPP LTE system
model simulations, the approximation algorithm with parti al
channel feedback is shown to have comparable performance to
the one with full channel feedback, while significantly reducing
the channel feedback overhead by nearly 50%.

I. I NTRODUCTION

The Third Generation Partnership Project (3GPP) Long-
Term Evolution (LTE) standardization efforts aim at devel-
oping future cellular technologies in order to improve spectral
efficiency and coverage while reducing costs [1]. Orthogonal
Frequency Division Multiple Access (OFDMA) has been
selected for LTE downlink (DL) radio access scheme due to
its robustness to multipath fading, higher spectral efficiency
and bandwidth scalability. Multiple access in DL OFDMA
is achieved by assigning different frequency portions of the
system bandwidth to individual users based on their existing
channel conditions. In LTE DL, the system bandwidth is
divided into multiple subbands (i.e. groups of subcarriers)
denoted asresource blocks(RBs). A resource block is the
minimum scheduling resolution in the time-frequency domain.

In order to schedule resources to the different users on the
downlink, the base station (or eNodeB) needs channel quality
reports from the individual users. The feedback reports from
the individual terminal users to the base station are sent in
the form of a channel quality indicator(CQI). A CQI is
an estimate of the downlink channel at the individual users
and is obtained using reference signals transmitted from the
base station. The packet scheduler at the base station uses the
CQI feedback from individual users to perform an RB to user
assignment every transmission time interval (TTI of 1ms in
LTE) according to the base station selected scheduling policy.
The scheduler also determines the data rate to be used for each

user in each subframe and can perform rate adaptation by using
adaptive modulation and coding(AMC) in different subframes
[5]. Such fastchannel dependent schedulingin both time and
frequency domain multiplexing is referred to asfrequency-
domain packet scheduling(FDPS) [15]. Recent studies [15]–
[17], [21] have shown potential gains in system capacity of
up to 40-60% over time-domain only scheduling.

Another promising technology for LTE is the use of mul-
tiple input multiple output (MIMO) antennas that can further
improve the spectral efficiency gain by usingspatial division
multiplexing [3]. Multiple antennas allow for an additional
degree of freedom to the channel scheduler. Different MIMO
schemes are considered in the 3GPP standard depending on
the spatial domain user selection over individual RBs. Single-
user MIMO (SU-MIMO) has the restriction that only one user
can be scheduled (as either transmit diversity mode or spatial
multiplexing mode) over each RB. Multi-user MIMO (MU-
MIMO) offers greater spatial-domain flexibility by allowing
different users to be scheduled on different spatial streams
over the same RB. In this paper, we focus on the SU-MIMO
scheduler.

In order to achieve large MIMO FDPS gain by exploiting
spatial, frequency and multiuser diversity, the schedulerneeds
to know the instantaneous radio channel conditions across all
users, RBs, and spatial streams for all the available MIMO
modes. Hence, with full CQI feedback, each user reports three
CQIs per RB; one for single-stream diversity mode and one
each for the two individual streams for dual-stream spatial
multiplexing MIMO mode [19], [20].

A straightforward approach for MIMO-FDPS is to select
the best user and corresponding MIMO mode (tx diversity
or multiplexing) for each individual RB independently by
considering a single RB in isolation regardless of other RBs’
assignment status. However, such a scheduling strategy cannot
be employed in the 3GPP LTE system which constrains down-
link transmission to each user terminal to only one MIMO
mode within each TTI (all RBs in a subframe assigned to an
individual user is transmitted either using transmit diversity
or by using spatial multiplexing) in order to reduce signaling
overhead [3], [4]. Therefore, the LTE DL MIMO FDPS
algorithms need to incorporate this MIMO mode constraint
while trying to maximize the scheduling objective.

In this paper, we address the fundamental MIMO-FDPS
problem of performing an optimal (depending on the schedul-



ing objective) RB to user mapping over the entire set of
resource blocks available at the downlink along with an addi-
tional constraint of restricting the transmission of all the RBs
selected for an individual user in a TTI (1ms) to one MIMO
mode. We analyze this problem by adopting the well-known
time-domainProportional Fair (PF) algorithm to maximize
the proportional fair criteria in the MIMO-FDPS setting. The
main goal of this paper is to extend the time-domain PF
algorithm to this problem framework by incorporating the
additional frequency and spatial dimensions.

A. The Model

We consider a cellular network with a single base station
and n active wireless users, each with two transmit and
two receive antennas (i.e. 2×2 MIMO antenna scheme). The
system bandwidth is divided intom RBs i.e., the base station
can allocatem RBs to a set ofn users. At each time instance
multiple RBs can be assigned to a single user (with the
only one MIMO mode constraint), each RB however can
be assigned to at most one user (as single-stream diversity
mode or dual-stream spatial multiplexing MIMO mode). In
this paper we assume aninfinitely backloggedmodel, i.e. at
each time instance, the base station has data available for
transmission to every user. Thus, the base station can schedule
all them RBs at every time instance (i.e. TTI of 1 ms in LTE).

We define the indicator variablexc
i,j(t) to indicate whether

or not RB c is assigned to useri with MIMO mode j (D:
Diversity, M: Multiplexing) at time instancet. We assume that
the channel conditions vary across different RBs and for dif-
ferent users. The channel conditions vary with time, frequency
(e.g. frequency selective multipath fading) and user location.
Therefore, each RB has a correspondinguser-dependentand
time-varyingchannel condition that is represented by the CQI
for that user over that RB. Letrc

i,j(t) be the transmit data size
for useri with MIMO modej on RBc at timet, which can be
calculated from the CQI feedback. The feedback from a user
consists of three elements per RB: rank index (RI), precoding
matrix index (PMI), and CQI(s) itself [3]. We assume that the
base station estimates the signal to noise ratio (SNR) on each
spatial RB for each user based on the user feedback.

Let pe,D(SNR) and pe,M (SNR) be the block error rates
(BLER) corresponding to the estimated SNR for a given CQI
using transmit diversity and spatial multiplexing, respectively.
The SNR-BLER modeling for different MIMO transmission
schemes can be obtained by prior link-level simulations and
made available at the base station. In an effort to make the
optimal use of MIMO channels, we utilize the concept of
effective data ratêrc

i,j(t), which takes into account the transmit
data sizerc

i,j(t) and the BLER for useri for MIMO mode j
on RB c at time t:

r̂c
i,j(t) = rc

i,j(t)×
(

1− pe,j(SNR)
)

Note that for a given useri and RBc, the effective data rate
r̂c
i,j(t) shows adiversity-multiplexing tradeoff[22] since the

diversity mode offers more reliable transmission (i.e. lower
BLER) for the same modulation and coding scheme (MCS)

while the transmit data sizerc
i,j(t) for multiplexing MIMO

mode is generally larger than the one for diversity mode (i.e.
rc
i,M (t) ≥ rc

i,D(t)) due to its dual-stream spatial multiplexing
transmission. Thus, ifxc

i,j(t) = 1, then useri has aneffective
data rate ofr̂c

i,j(t) for RB c with MIMO mode j at time
instancet.

B. Problem Formulation

In the time-domain, the well known Proportional Fair
(PF) algorithm [12], [18] aim to maximize over all feasible
scheduling rules, the utility function

∑

i log Ri (known as as
proportional fair criteria), whereRi is the long-term service
rate of useri, and updated according to:

Ri(t + 1) =

{

(1 − α)Ri(t) + αri(t) if user i scheduled
(1 − α)Ri(t) otherwise.

whereri(t) is the channel rate for useri andα is a time con-
stant typically on the order of 1000 slots (e.g. 1/1000). In order
to maximize

∑

i log Ri, one should maximize
∑

i di(t)/Ri(t)
wheredi(t) is total data transmitted to useri at timet (proven
in [6], [14], [18]). Hence the time-domain PF algorithm always
serves the user who maximizesri(t)/Ri(t) at each time step
t. Note that the PF algorithm achieves high throughput and
maintains proportional fairness amongst all users by giving
priority to users with a high-quality channel rate (ri(t)) and
a low current average service rate (Ri(t)). In this way the PF
scheduler strikes a good balance between overall throughput
and fairness.

We now extend the time-domain PF algorithm for the
MIMO-FDPS scheduler by taking into account the extra
frequency and spatial dimensions. We again aim at maximizing
the utility function

∑

i log Ri where the objectiveRi is
updated according to:

Ri(t + 1) = (1− α)Ri(t) + α
∑

c

∑

j

xc
i,j(t) · r̂

c
i,j(t)

Note thatRi is updated with the effective data ratêrc
i,j(t)

instead of the transmit data sizerc
i,j(t), since we aim to make

the best use of MIMO channels by exploiting the diversity-
multiplexing tradeoff, which is represented by the effective
data ratêrc

i,j(t).
Let λc

i,j(t) = r̂c
i,j(t)/Ri(t) be thePF metric valuefor user

i on RBc and MIMO modej at time instancet. Based on the
work in [9], we define a MIMO FDPS version of PF objective
function at time instancet as follows:

max
∑

i

∑

c

∑

j∈{D,M}

xc
i,j(t)λ

c
i,j(t) (1)

It is fairly straightforward to see that objective (1) maxi-
mizes

∑

i di(t)/Ri(t) at time stept, and therefore achieves
proportional fairness, i.e. optimizing objective (1) maximizes
the utility function

∑

i log Ri in the time, frequency, and
spatial domain context. For this reason, a straightforward
approach for MIMO FDPS scheduling is to apply the PF
algorithm directly over each RB one-by-one, i.e. for RBc the
PF algorithm selects the best user and corresponding MIMO



mode (tx diversity or multiplexing) maximizinĝrc
i,j(t)/Ri(t)

at time slott. However, for LTE DL MIMO FDPS scheduling
we need to incorporate the additional constraint of using only
one MIMO mode per user per time instance. Accordingly,
we can rewrite the objective (1) as the following optimization
problem:

max
∑

i

∑

c

∑

j∈{D,M}

xc
i,jλ

c
i,j (1)

subject to
∑

i

∑

j∈{D,M}
xc

i,j ≤ 1, ∀c (2)

∑

i

∑

c

∑

j

xc
i,j ≤ m (3)

i 6= i′, ∀c, c′, xc
i,D = xc′

i′,M = 1 (4)

xc
i,j ∈ {0, 1} (5)

To simplify notation, the dependence on timet is omitted.
Constraint (2) states that each RB can be assigned to at most
one user either using transmit diversity or spatial multiplexing.
Constraint (3) denotes that the system has the total ofm
RBs. Constraint (4) ensures that only one MIMO mode (i.e.
diversity or multiplexing) can be selected for a single user
across different RBs for that user for each time instance. Inthis
paper, we explore the fundamental nature of this MIMO-FDPS
problem by seeking an efficient algorithm that maximizes
objective (1) while satisfying constraints (2)-(5).

C. Related work

The Proportional Fair (PF) algorithm was introduced in [12],
[18] and has been extensively studied in the research com-
munity [6]–[8], and is widely used as a standard scheduling
algorithm in the current wireless systems such as CDMA 2000
1xEV-DO [10], [12].

The FDPS scheduling research is still in a preliminary
stage, and most studies directly adapt the time-domain PF
algorithm into frequency-domain context. Results show that
the FDPS promises up to 40-60% gain over time-domain
only scheduling [15]–[17]. Moreover [21] shows that the
frequency selectivity of FDPS significantly improves the short-
term fairness (a well-known problem of the conventional time-
domain PF scheduling is its poor short-term fairness).

There have been very few research results on extending
the FDPS algorithm using the additional spatial degree of
freedom by incorporating multiple antennas at the transmitter
and receiver. In [19], the authors raise the issue of the
MIMO mode constraint in LTE and proposed a couple of
simple heuristic algorithms. However, they provide neither
the analysis on the hardness implication of this problem, nor
theoretical performance bounds of the algorithms. In [20],
signaling reduction methods are proposed to mitigate the CQI
reporting overhead in the context of MIMO-FDPS.

In this paper, we extend the LTE FDPS scheduling algo-
rithm to incorporate the MIMO mode selection (diversity or
multiplexing) per user in each TTI in order to maximize the PF

criterion extended to frequency and spatial domains. We prove
that the SU-MIMO FDPS problem with the only one MIMO
mode constraint is NP-hard. We develop two approximation
algorithms (Alg1 with full channel feedback andAlg2 with
partial channel feedback) with provable performance bounds.
Using 3GPP LTE system model simulations, we show that
both algorithms offer measurable throughput gains over 1×2
SIMO FDPS-only scheduling. However, the short-term fair-
ness of the FDPS-only scheduling is better compared to the
SU-MIMO FDPS scheduling algorithms. Finally, we show
that althoughAlg2 has partial feedback information (nearly
50% feedback reduction compared toAlg1), its performance
is comparable toAlg1.

II. H ARDNESSRESULT

In this section, we first show that the SU-MIMO FDPS
problem is NP-hard and hence, we cannot find an efficient
algorithm that optimizes objective (1) under the only one
MIMO mode constraint unless P = NP. We then demonstrate
that the search space for the above problem is quite large
making it computationally intractable for practical systems.

A. Hardness of objective (1)

For our reduction, we present the NP-complete problem
called3-Satisfiability, or 3-SAT[13]:

• Given a set of clausesC1, . . . , Ck, each of length 3, over
a set of boolean variablesX = {x1, . . . , xn}, does there
exist a satisfying truth assignment?

In 3-SAT, aclauseis simply a disjunction of 3 distinct terms
(i.e. t1∨ t2 ∨ t3, each termti ∈ {x1, x2, . . . , xn, x1, . . . , xn}),
and atruth assignmentfor X is an assignment of the value 0
or 1 to eachxi. An assignmentsatisfiesa collection of clauses
C1, . . . , Ck if it causes all of theCi to evaluate to 1 under the
rules of Boolean logic (i.e. the conjunctionC1∧C2∧ . . .∧Ck

to evaluate to 1).
Theorem 1:LTE SU-MIMO PF-FDPS problem (i.e. max-

imization of the PF objective (1) under the only one MIMO
mode constraint) is NP-hard.

Proof: We reduce 3-SAT to our problem, and our re-
duction will be based on viewing an instance of 3-SAT as a
search over ways to choose a single term (to be satisfied) from
each clause, subject to the constraint that one must not choose
conflicting terms1 from different clauses.

A decision version of our problem is to determine whether
for a given frequency and spatial domain statusS (i.e. a col-
lection of valueλc

i,j across all users, RBs, and MIMO modes),
there exists an allocation strategy that satisfies the only one
MIMO mode constraint and results in an aggregate value
at leastw. We construct our problem instance in which the
existence of a satisfiable allocation strategy for our problem
depends on the existence of a satisfying truth assignment for
a 3-SAT instance.

Consider an arbitrary instance of 3-SAT, withn variables
x1, . . . , xn and k clausesC1, . . . , Ck. We first construct our

1We say that two termsconflict if one is equal to a variablexi and the
other is equal to its negationxi.
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diversity multiplexing
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3-SAT

Fig. 1. The reduction from an example 3-SAT instance consisting of 4
variables and 4 clauses (i.e.n = k = 4). Dark-colored RBs represent the
corresponding 3-SAT terms that appear in their matching clauses.

frequency and spatial domain status instanceS as follows.
A user in S corresponds to each variable in 3-SAT. More
specifically, for each variablexi and its negationxi, we have
a userui for diversity modeui,D and for multiplexing mode
ui,M , respectively. An RB inS matches with each clause in
3-SAT. Thus, we haven users andk RBs as shown in Figure
1. Since at most one user can be selected for each RB, this
achieves our goal of choosing a single term in each clause that
will evaluate to 1. However, we still need to explicitly encode
the conflicting terms in a 3-SAT instance.

We now assign the scheduling metric valuesλc
i,j in our

frequency and spatial domain statusS to model the conflicts
of a given 3-SAT instance. In our problem formulation, either
transmit diversity or spatial multiplexing mode can be selected
for each user. It turns out that such one MIMO mode constraint
is quite natural for encoding the conflicting property of 3-SAT.
For each RBc, we setλc

i,D = 1 if xi appears in clauseCc;
similarly, we setλc

i,M = 1 if xi appears in clauseCc, and
λc

i,j = 0 otherwise. Finally, we define the target aggregate
valuew = k, which is the total number of clauses in a given 3-
SAT instance. This completes the construction of the frequency
and spatial domain statusS.

We claim that our resulting constructionS has a feasible
allocation strategy with an aggregate value at leastw if and
only if the original 3-SAT instance is satisfiable. Indeed, if
the 3-SAT is satisfiable, then each RBc in our domainS
can be assigned to at least one useri with MIMO mode
j whose metric valueλc

i,j = 1. Let I be a set consisting
of one such userui,j for each RB. If two different MIMO
modes were selected for a single userui,D, ui,M ∈ I, then
the corresponding terms in 3-SAT would conflict but this is
not possible since they both evaluate to 1.

Conversely, suppose our domainS has a feasible allocation
strategyOPT ∗ with a resulting aggregate value at leastw.
Then, first of all, the aggregate value is exactlyw, andOPT ∗

must allocate one useri (with λc
i,j = 1) for each RBc. We

now claim that there is a satisfying truth assignmentν for
variables in the 3-SAT instance. For each variablexi, if a user
i is not allocated byOPT ∗, then we arbitrarily setν(xi) = 1.
Otherwise,OPT ∗ selects exactly one MIMO mode for user
i (i.e. ui,D or ui,M ) due to our problem constraint. IfOPT ∗

choosesui,D, we setν(xi) = 1, and otherwise we setν(xi) =

0. By constructingν in this way, all the clauses in the 3-SAT
instance will evaluate to 1.

B. Computational intractability in practice

Since we have proved in Theorem 1 that optimizing objec-
tive (1) is NP-hard, one might be tempted to optimize objective
(1) by a “brute-force” search. Such an approach may work
fine on relatively small-sized input using high computational
power. That is, even though the problem itself is NP-hard, we
may solve the problem by trying all possible user and MIMO
mode combinations if the size of the typical instance is small.
To examine whether or not brute-force search is practical, we
first evaluate the running time of brute-force search for this
problem.

Lemma 1:The running time of brute-force search for opti-
mizing objective (1) under the one MIMO mode constraint is
O(nn) if m ≥ n, andO(mm) if m < n. (n users,m RBs)
The proof is given in the Appendix.

In practical systems, both the number of usersn and the
number of RBsm can be quite large. For example, 3GPP LTE
Release 8 supports a scalable bandwidth of 5, 10, 15, and 20
MHz (corresponding to 25, 50, 75, and 100 RBs, respectively)
[3]. Furthermore, channel bandwidth up to 100 MHz (nearly
500 RBs) is being considered for LTE-Advanced. Moreover,
we may have at least several tens of active users in a cell.
Even in a sparse cell (sayn = 10), it can take several seconds
to complete the search (1 oper.≈ 1 ns), which is too slow to
schedule data every 1 ms in the real systems. Thus, we cannot
optimize objective (1) in practice either.

C. Extension to MU-MIMO

Although we do not consider MU-MIMO in this paper, the
hardness result can be naturally extended to the MU-MIMO.

Theorem 2:MU-MIMO FDPS problem (i.e. maximization
of an objective function under the only one MIMO mode
constraint) is NP-hard.

Proof: Since different users (under the user-paring con-
straint with respect to their precoding matrix) can be scheduled
on different spatial streams over the same RB in MU-MIMO,
the SU-MIMO is a special case of the MU-MIMO. This
implies that MU-MIMO problem is no easier than our SU-
MIMO problem that we have proved NP-hard in Theorem 1.

III. A PPROXIMATION ALGORITHMS

The hardness result in Section II provides a compelling
reason to stop searching for an optimal solution algorithm for
objective (1), and rather to pursue developingapproximation
algorithms that run in polynomial time and are able to find
solutions that are guaranteed to be close to optimal.

In this section we present two approximation algorithms
Alg1 and Alg2 that give constant-factor guaranteed perfor-
mance bounds for objective (1). Interestingly, both algorithms
provide 1

2 -approximations for objective (1), whileAlg2 makes
use of only a subset of CQI feedback information compared
to Alg1 does.



Algorithm 1 : with full-CQI feedback
1: // Initial user-MIMO mode selection
2: for RB c = 1 to m do
3: select the best useri as MIMO modej with largest

valueλc
i,j

4: end for
5: // Conflict resolution
6: Let U be the set of users, each selected as both diversity

and multiplexing MIMO modes on different RBs
7: while U 6= ∅ do
8: pick a useri ∈ U
9: Let K be the RBs assigned to useri

10: if
∑

c∈K λc
i,D ≥

∑

c∈K λc
i,M then

11: assign all RBsc ∈ K to useri as diversity mode
12: else
13: assign all RBsc ∈ K to useri as multiplexing mode
14: end if
15: SetU ← U − {i}
16: end while

A. Alg1: 1/2-Approximation with Full-CQI feedback

We first presentAlg1, a simple two-pass greedy algorithm
similar to the one in [19] that utilizes full-CQI feedback as
an input for decision (i.e. each user reports three CQIs per
RB; one for diversity mode, the other two for dual-stream
multiplexing MIMO mode, so that all the PF metric values
λc

i,j are known to the scheduler). The algorithm first makes
one pass through the RBs for initial selection of user-MIMO
mode; when it comes to RBc, it assignsc to the best useri as
MIMO modej whose PF metric valueλc

i,j is largest for RBc.
This first-round procedure can select multiple MIMO modes
for a single user on different RBs. Once the initial selection is
done, the algorithm tries to resolve the MIMO mode conflict
for the set of usersi that are each selected as both diversity
and multiplexing MIMO modes. LetK be the RBs assigned to
one such useri in the initial selection. The algorithm compares
the use of diversity mode for useri on those RBsc ∈ K (i.e.
the sum of PF metric values

∑

c∈K λc
i,D) and the multiplexing

mode (i.e. the sum of values
∑

c∈K λc
i,M ). Then, the user is

forced to use the MIMO mode which gives a better aggregate
value.

We now provide an analysis of algorithmAlg1.
Theorem 3:Alg1 is a 1

2 -approximation for objective (1).
Proof: Let T denote the aggregate PF value of the

resulting assignment byAlg1. We here show thatT is not
much smaller than (more precisely,at least one half of) the
maximum possible aggregate PF valueT ∗ by the optimum
algorithm, which we denoteOPT ∗.

For analysis onupper bound, we first relax the one MIMO
mode constraint to allow multiple MIMO modes to be selected
for a single user, then we can solve the resulting problem for
objective (1) in polynomial time (i.e. by selecting the best
user for each RB regardless of the MIMO mode restriction).
This can violate our problem constraint but guarantees thatits

objective isat leastthe original problem optimumT ∗:

∑

c

(

max
i,j

λc
i,j

)

≥ T ∗

We now consider the moment whenAlg1 has just made the
initial user-MIMO mode selection for all RBs, and letKi,D

and Ki,M be the sets of RBs assigned to useri as diversity
mode and multiplexing mode, respectively. SinceAlg1 always
selects the best user-MIMO mode for each RB during the
initial selection phase, we therefore have,

∑

c

(

max
i,j

λc
i,j

)

=
∑

i

∑

c∈Ki,D

λc
i,D +

∑

i

∑

c∈Ki,M

λc
i,M

=
∑

i

(

∑

c∈Ki,D

λc
i,D +

∑

c∈Ki,M

λc
i,M

)

(6)

Then, Alg1 performs the conflict resolution procedure to
decide the resulting MIMO mode for one such useri, by the
rule comparing the values summing over all the RBs assigned
for useri; we define such a functionf(·) by

f(i) = arg max
j

{

∑

c∈Ki,D∪Ki,M

λc
i,j

}

(7)

Thus,f(i) = D if diversity mode is favored for useri, and
f(i) = M otherwise. We denotef(i) as complement off(i).
So, (7) implies that,

∑

c∈Ki,D∪Ki,M

λc
i,f(i) ≥

∑

c∈Ki,D∪Ki,M

λc

i,f(i)
(8)

Equation (6) indicates that
∑

c∈Ki,D
λc

i,D +
∑

c∈Ki,M
λc

i,M

is an upper bound for a certain useri. By using Inequality (8),
each term above can be bounded by:

∑

c∈Ki,D

λc
i,D

≤
∑

c∈Ki,D

λc
i,D +

∑

c∈Ki,M

λc
i,D

≤
∑

c∈Ki,D

λc
i,f(i) +

∑

c∈Ki,M

λc
i,f(i) by Inequality (8) (9)

Similarly, by applying Inequality (8) on the second term,

∑

c∈Ki,M

λc
i,M ≤

∑

c∈Ki,D

λc
i,f(i) +

∑

c∈Ki,M

λc
i,f(i) (10)

Adding up two Inequalities (9) and (10), we get

∑

c∈Ki,D

λc
i,D +

∑

c∈Ki,M

λc
i,M ≤ 2

(

∑

c∈Ki,D

λc
i,f(i) +

∑

c∈Ki,M

λc
i,f(i)

)

= 2
∑

c∈Ki,D∪Ki,M

λc
i,f(i) (11)

Note that in above Inequality (11),
∑

c∈Ki,D∪Ki,M
λc

i,f(i) is
the resulting aggregate value thatAlg1 assigns for useri. Now



we generalize Inequality (11) for every useri:

T ∗ ≤
∑

i

(

∑

c∈Ki,D

λc
i,D +

∑

c∈Ki,M

λc
i,M

)

≤
∑

i

(

2
∑

c∈Ki,D∪Ki,M

λc
i,f(i)

)

= 2
∑

i

∑

c∈Ki,D∪Ki,M

λc
i,f(i)

= 2T

This immediately impliesT ≥ 1
2T ∗, which completes the

proof.
We now show that our analysis of algorithmAlg1 is

essentially tight.
Theorem 4:For any constantε > 0, there exists an instance

on which Alg1 achieves at most a1/(2 − ε) fraction of the
optimal value of objective (1).

Proof: It is not hard to give an example in which the
solution byAlg1 is indeed close to a factor of12 away from
optimum. The example is as follows. We have two usersα and
β, with two RBs in the system. The PF metric values are given
by λ1

α,D = λ2
α,M = 1, andλ1

β,D = 1 − ε. The rest are set to
zero. The optimal algorithm assigns RB1 to userβ and RB2
to userα as diversity mode and multiplexing MIMO mode,
respectively. Hence the optimal value is2 − ε. On the other
hand,Alg1 assigns both RBs to userα (sinceλ1

α,D > λ1
β,D),

with the resulting value to be 1, which is therefore at most a
fraction 1/(2− ε) from the optimal.

B. Alg2: 1/2-Approximation with Reduced-CQI feedback

While Alg1 with 1
2 -approximation seems a good candidate

for the ideal case of full-CQI feedback assumption, it can make
the signaling overhead quite large since each user needs to
report CQIs for all the available MIMO modes. Moreover, this
uplink CQI signaling overhead is a function of the number of
RBs as well as that of active users in the system. Thus, in
order to reduce the signaling overhead, we present another
1
2 -approximation algorithmAlg2, in which each user reports
CQI only for the “better effective rate” MIMO mode per RB
at a time, so that a significant amount of feedback signaling
is reduced at the expense of the additional processing at the
user side.2 Now only half of the PF metric valuesλc

i,j (i.e. for
useri on RB c as better MIMO modej; for a certain useri
the better effective data ratêrc

i,j implies the better PF metric
value λc

i,j = r̂c
i,j/Ri, sinceRi is constant over all RBs) are

known to the scheduler.
Similar toAlg1, the algorithm first makes one pass through

the RBs for initial selection of user-MIMO mode among the
reported ones; for RBc, it selects the best useri as MIMO
mode j whose PF metric valueλc

i,j is largest. Once the
initial selection is done, the algorithm handles a set of users
assigned as multiple MIMO modes to enforce the MIMO

2In order for each user to determine the MIMO mode that resultsin better
effective data ratêrc

i,j(t) for each RB, BLER tables are known/stored at the
user terminal as well.

Algorithm 2 : with Reduced-CQI feedback
1: // Initial user-MIMO mode selection
2: for RB c = 1 to m do
3: select the best useri as MIMO modej with largest

valueλc
i,j among the reported ones

4: end for
5: // Conflict resolution
6: Let U be the set of users, each selected as both diversity

and multiplexing MIMO modes
7: while U 6= ∅ do
8: pick a useri ∈ U
9: Let KD and KM be the RBs assigned to useri as

diversity mode and multiplexing mode, respectively
10: if

∑

c∈KD
λc

i,D ≥
∑

c∈KM
λc

i,M then
11: all RBs c ∈ KD ∪KM to useri as diversity mode
12: (for RBs c ∈ KM , the lowest data rate is selected)
13: else
14: all RBsc ∈ KD∪KM to useri as multiplexing mode
15: (for RBs c ∈ KD, the lowest data rate is selected)
16: end if
17: SetU ← U − {i}
18: end while

mode constraint. LetKD and KM be the RBs assigned to
useri as diversity mode and multiplexing mode respectively.
The algorithm compares the diversity mode for useri on RBs
c ∈ KD (i.e. the sum of PF metric values

∑

c∈KD
λc

i,D) and
the multiplexing mode on RBsc ∈ KM (i.e. the sum of values
∑

c∈KM
λc

i,M ). Then, the user is forced to use the MIMO
mode which gives a better aggregate value, and is assigned
on RBs c ∈ KD ∪ KM . Note that Alg2 cannot compare
∑

c∈KD∪KM
λc

i,D and
∑

c∈KD∪KM
λc

i,M as in Alg1, since
∑

c∈KM
λc

i,D and
∑

c∈KD
λc

i,M are not known to the scheduler
in Alg2. Likewise, once useri is chosen to use MIMO modej
on RBsc ∈ Kj ∪Kj′ , then the lowest data rate is selected on
RBc c ∈ Kj′ as a conservative approach (increased reliability)
since CQIs for MIMO modej on RBsc ∈ Kj′ are not reported
by useri.

We now provide an analysis of algorithmAlg2.
Theorem 5:Alg2 is a 1

2 -approximation for objective (1).
Proof: The proof is quite similar to the analysis ofAlg1.

Here, we letT be the resulting aggregate PF value byAlg2.
As before, we first use the relaxation of the one MIMO mode
constraint to obtain an upper bound on the optimumT ∗:

∑

c

(

max
i,j

λc
i,j

)

≥ T ∗

At the moment whenAlg2 has just made the initial user-
MIMO mode selection for all RBs, we letKi,D and Ki,M

be the sets of RBs assigned to useri as diversity mode
and multiplexing mode, respectively. Note that the resulting
initial selection byAlg2 is the same as that byAlg1 since
each user reports CQI for a better MIMO mode per RB (i.e.
better effective data rate) inAlg2. Therefore, during the initial
selection phase,Alg2 always selects the best user-MIMO



mode for each RB:
∑

c

(

max
i,j

λc
i,j

)

=
∑

i

(

∑

c∈Ki,D

λc
i,D +

∑

c∈Ki,M

λc
i,M

)

(12)

Then, Alg2 performs the conflict resolution procedure to
decide the resulting MIMO mode for one such useri, by the
rule comparing the values summing over only the diversity
RBs∈ Ki,D and only the multiplexing RBs∈ Ki,M assigned
for useri separately; we define such a functiong(·) by

g(i) = arg max
j

{

∑

c∈Ki,j

λc
i,j

}

(13)

Thus, g(i) = D if diversity mode is favored for useri, and
g(i) = M otherwise. We denoteg(i) as complement ofg(i).
So, (13) implies that,

∑

c∈Ki,g(i)

λc
i,g(i) ≥

∑

c∈K
i,g(i)

λc

i,g(i)
(14)

Equation (12) indicates that
∑

c∈Ki,D
λc

i,D +
∑

c∈Ki,M
λc

i,M

is an upper bound for a certain useri. By using Inequality (14),
each term above can be bounded by:

∑

c∈Ki,D

λc
i,D ≤

∑

c∈Ki,g(i)

λc
i,g(i) (15)

∑

c∈Ki,M

λc
i,M ≤

∑

c∈Ki,g(i)

λc
i,g(i) (16)

Adding up two Inequalities (15) and (16), we get
∑

c∈Ki,D

λc
i,D +

∑

c∈Ki,M

λc
i,M ≤ 2

∑

c∈Ki,g(i)

λc
i,g(i) (17)

Note that in above Inequality (17),
∑

c∈Ki,g(i)
λc

i,g(i) is the
resulting aggregate value (more precisely, the actual value can
be larger, sinceAlg2 assignsat leastthe lowest data rate for
the unreported CQIs.) thatAlg2 assigns for useri. Now we
generalize Inequality (17) for every useri:

T ∗ ≤
∑

i

(

∑

c∈Ki,D

λc
i,D +

∑

c∈Ki,M

λc
i,M

)

≤
∑

i

(

2
∑

c∈Ki,g(i)

λc
i,g(i)

)

= 2
∑

i

∑

c∈Ki,g(i)

λc
i,g(i)

≤ 2T

This immediately impliesT ≥ 1
2T ∗, which completes the

proof.
We conclude this section by showing that our analysis of

algorithmAlg2 is tight.
Theorem 6:For any constantε > 0, there exists an instance

on which Alg2 achieves at most a1/(2 − ε) fraction of the
optimal value of objective (1).

Proof: Here we use a much simpler example than the one
in Theorem 4. The example is as follows. We have only one
userα, with two RBs in the system. The PF metric values are
given byλ1

α,D = 1, λ2
α,D = 0, andλ1

α,M = λ2
α,M = 1 − 1

2ε.
The optimal algorithm, as well asAlg1, assigns both RBs to

userα as multiplexing MIMO mode. Hence the optimal value
is 2 − ε. On the other hand,Alg2 assigns both RBs to user
α as diversity mode (sinceλ1

α,D > λ2
α,M ), with the resulting

value to be 1, which is therefore at most a1/(2− ε) fraction
of the optimal value.

Remark. The performance ofAlg2 can be further improved
by a more advanced assignment strategy for the RBsc ∈ Kj′

that user i is assigned as MIMO modej without CQIs
for mode j; for example, instead of using the conservative
approach, it may try to select another useri′ who (i) has the
best possible CQI for MIMO modej reported on RBsc ∈ Kj′

and (ii) does not violate the one MIMO mode constraint over
RBs thati′ is already, if any, assigned. Such a strategy may,
however, incur another round of iterative optimization search
process.

IV. SIMULATIONS

In order to evaluate the performance of the proposed al-
gorithms, we conducted MIMO-OFDMA system level sim-
ulations based on 3GPP LTE system model. We used trace
files generated as specified in 3GPP deployment evaluation
[2], based on the Typical Urban channel model. Table I
summarizes a list of the default simulation parameters and
assumptions.

We analyze the performance of the algorithms in terms of
cell throughput, short-term fairness, as well as uplink CQI
signaling overhead and assess how well they emulate the PF
criteria in the MIMO-FDPS setting. We use Jain’s fairness
index [11], measured by the data-rate fairness criterion:

Fφ(∆t) =
[
∑N

i=1 φi(∆t)]2

[N ·
∑N

i=1 φi(∆t)2]
,

whereφi(∆t) denotes the actual data-rate useri achieved in
time interval ∆t, with N users in the system;Fφ(∆t) = 1
implies that all users received equal data-rate within time∆t.

We first measure the system throughput of our algorithms, as
well as 1×2 SIMO FDPS-only as a reference with varying the
number of active users in the cell. As shown in Figure 2, both

TABLE I Simulation parameters

Parameter Setting

System bandwidth 20 MHz
Subcarriers per RB 12
RB bandwidth 180 kHz
Number of RBs 96
Cell-level user distribution Uniform
Number of active users in cell 10, 20, 30, 40, 50
Traffic model Infinitely backlogged
Transmission time interval (TTI) 1 ms
Channel model Typical Urban
User speed 3, 30, 120 km/h
User receiver 2x2/MMSE/ZF
Modulation/coding rate settings QPSK: 1/4 - 8/9

16QAM: 1/2 - 8/9
64QAM: 2/3 - 8/9

HARQ model Ideal chase combining
HARQ Aak/Nack delay 8 ms
Max. number of HARQ retransmission 3
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user with multiple MIMO modes in 1 TTI
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user with multiple MIMO modes in 1 TTI

MIMO-FDPS algorithmsAlg1 and Alg2 offer considerable
gains in the order of 24-35% over the reference case of 1×2
SIMO FDPS-only. We also observe thatAlg1 consistently
provides a slightly better throughput performance thanAlg2.
Figure 3 and 4 present the short-term data-rate fairnessFφ(∆t)
in the cell of 30 and 50 active users, respectively by varying
the time interval window∆t from 10 ms (i.e. 10 TTI) to
50 ms. Based on Figure 3 and 4, we observe that both SU-
MIMO-FDPS algorithmsAlg1 and Alg2 have similar short-
term fairness. However, the short term fairness of SU-MIMO-
FDPS algorithms is worse compared to FDPS-only algorithm.
This result seems quite intuitive in the sense that SU-MIMO
essentially facilitates the peak user data rate improvement (i.e.
only one user can be scheduled each RB with an opportunity
of being decided as dual-stream transmission), while FDPS-
only tends to promote the average data rate enhancement that
helps to further improve the fairness among users.

We now estimate the uplink CQI feedback signaling over-
head. The resolution for CQI has been decided to be 4 bits
per RB per spatial stream in 3GPP LTE Release 8 [3]. In
the simulations, the system bandwidth of 20 MHz is divided
into 96 RBs (each with 180 kHz). ForAlg1 with the full-CQI
feedback assumption, since the CQI is reported for both single-
stream diversity mode and dual-stream multiplexing mode
(one CQI per stream), the CQI signaling requires 4× 96× 3 =
1152 bits/update/user. On the other hand,Alg2 needs the CQI

only for the better MIMO mode so that the CQI overhead can
be reduced to 4 or 8 bits (instead of 12 bits) per RB, depending
on which mode is favored at each update. Figure 5 shows the
simulation result of the average CQI signaling overhead per
update with varying the number of active users.Alg2 reduces
the CQI signaling overhead by around 50% over the signaling
requirement ofAlg1.3

A closer inspection of Figure 2 reveals that in spite of the
full-CQI utilization, Alg1 displays only marginal throughput
gain overAlg2. With increasing number of active users, the
throughput gain ofAlg1 over Alg2 gets smaller (e.g. when
n = 50, its gain is within 1% overAlg2). To understand
why Alg2 shows similar performance toAlg1 with a large
number of users in the cell, we record the number of the RBs
assigned to a user with multiple MIMO modes selected by
the initial user-MIMO mode selection procedure, and refer
to such RBs asconflicting RBs. In addition, we trace the
number of RBs in which the conflict resolution procedure
forces a user with conflicting RBs to relinquish the originally
selected MIMO mode, and refer to them asrelinquishedRBs.
Figure 6 and 7 plot the average number of conflicting RBs and
relinquished RBs per user with multiple MIMO mode selected
in 1 TTI, respectively. It is observed that both conflicting RBs

3The feedback reduction is still an open issue yet a key feature in
LTE. Further feedback compression techniques such as wavelet based signal
analysis and long-term based signaling are currently underdiscussion in 3GPP.



and relinquished RBs decrease with the number of active users.
This implies that themultiuser diversitymight help reduce
the probability of conflicting assignment during the initial
selection procedure of the approximation algorithms. Hence, a
large number of users results in similar performance for both
algorithms.

Now we recall that our ultimate goal is to maximize the
PF criteria (i.e. maximizing

∑

i log Ri, whereRi is the long-
term service rate for useri) in the MIMO-FDPS context. We
assess how well our approximation algorithms emulate the
proportional fair objective in this problem framework. Table
II shows the values of the PF criteria (i.e.

∑

i log Ri) with
the number of active users (10, 20, 30, 40, and 50 users) in
the cell. In all cases we observe thatAlg2 has the values

TABLE II PF criteria (
P

i log Ri) of Alg1 andAlg2
P

i
log Ri 10 20 30 40 50

Alg1 85.7 159.3 227.4 292.2 354.6
Alg2 85.2 158.8 227.1 292.0 354.5

of
∑

i log Ri very close (within only a small factor) to that
of Alg1. Furthermore, a closer look at the table shows that
the gap between the values ofAlg1 and Alg2 gets smaller
with increasing number of active users. This trend indeed
conforms to our earlier results on the cell throughput and short-
term fairness of our algorithms (recall that the PF criterion
is a comprehensive metric that takes both throughput and
fairness into account). Therefore,Alg2 maintains acceptable
performance (i.e. only marginal performance loss overAlg1)
along with CQI signaling reduction of about 50% overAlg1
with full-CQI feedback requirement.

V. CONCLUSIONS

In this paper we consider the LTE SU-MIMO FDPS
scheduling problem of maximizing PF objective under the
constraint that only one MIMO mode per single user can be
used for each time instance. We first prove that SU-MIMO
FDPS is NP-hard under the LTE requirement. We then present
two SU-MIMO FDPS approximation algorithmsAlg1 and
Alg2. While both give 1

2 -approximations for the objective,
Alg2 makes use of only a subset of CQI feedback information
compared toAlg1.

Based on 3GPP LTE framework, simulation results reveal
that the approximation algorithmsAlg1 andAlg2 offer mea-
surable gains in the order of 24-35% over the 1×2 SIMO
FDPS-only (reference case). Moreover,Alg2 achieves a CQI
signaling reduction of 50% with only 1-5% performance
degradation overAlg1 that requires the full-CQI feedback.
We also prove that the LTE MU-MIMO FDPS problem is NP-
hard. Future work would entail extending the results presented
in this paper to develop efficient algorithms for MU-MIMO
FDPS scheduling.
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APPENDIX

A. Proof of Lemma 1
Proof: We first consider the number of possible combi-

nation of users to be scheduled (under only one MIMO mode
constraint) in one time slot wherem ≥ n (i.e. the number of
RBs is greater than that of users):

(

n

1

)

·2+
(

n

2

)

·22 · · ·+
(

n

n

)

·2n.
Since we havem RBs, the total search space is:

T (n, m) =

n
∑

i=1

(

n

i

)

· 2i · im ≥
n

∑

i=1

(

n

i

)

· 2i · in = O(nn)

In the case whenm < n, we cannot assign more thanm users
at a time:

(

n

1

)

·2+
(

n

2

)

·22 · · ·+
(

n

m

)

·2m. Then the total search
space is:T (n, m) =

∑m

i=1

(

n

i

)

· 2i · im = O(mm)


