
Comments on Recent Advances in Cryptoanalysis of URSA

“In theory there is no difference between theory and practice. In practice there
is...”

–Bruce Schneier in Secrets and Lies [8],2000

1 Introduction

Membership control (or access control) is a challenging problem in self-organized mobile
ad-hoc networks (MANETs), notably because these networks typically do not involve a
centralized entity that is trusted by all network participants. Moreover, even if such a
central authority exists, it not only poses the security threat of a single point of failure,
but also impedes the scalability and availability of the security services, because the
mobile nodes have to frequently locate and communicate with this centralized entity over
multi-hop, highly dynamic, and bandwidth-constrained wireless channel. As a result,
the existing access control mechanisms that follow a client/server architecture cannot be
directly applied in the context of MANETs.

In earlier publications [5, 3, 4], we have proposed URSA, a peer-to-peer membership
control framework for MANETs that addresses the above challenges. Our contributions
in these work are three-fold. First, we proposed the URSA architecture that exempts the
necessity of centralized entities by delegating the membership control authority equally
to all nodes in the network. Second, we presented a protocol suite that implements
this architecture, and evaluated its network performance through both simulations and
implementation. Third, we proposed a novel cryptographic primitive, based on threshold
RSA, that facilitates the secret sharing among multiple nodes in the URSA architecture.

One salient feature of URSA is that it delegates the membership control authority to
a group of nodes, without completely trusting any single node. In URSA, each node acts
as an access control agent that monitors its local neighbors independently, while multi-
node consensus, enabled by secret sharing, is employed in deciding whether to admit or
evict a node. This way, no single node monopolizes the system; instead, multiple local
nodes monitor each other and jointly make the access control decisions. To the best of
our knowledge, URSA is the first work that regulates network memberships in such a
democratic peer-to-peer manner.

The benefits of URSA have been highlighted in the literature through its desirable
network performance, e.g., scalability to large node population, robustness to wireless
channel errors and/or node mobility, and high degree of service availability despite the
network dynamics. The basic concepts of URSA are also shown to be applicable in other
contexts such as the emerging peer-to-peer networks and applications [6].

1



While URSA was designed as a practical network security system, rather than a
cryptographic theory by any means, there has recently been an increasing interest from
the cryptography community to examine the security features of URSA through crypto-
analysis [6, 2]. We believe that these efforts are invaluable towards a deep understanding
on URSA. In fact, an interesting attack, called the key search attack, against URSA has
been discovered in [2]. Unfortunately, the authors of [2] misunderstand several critical
issues in our original design, and overlook the practical constraints in realistic networking
systems. As a result, their analytical results are flawed and misleading. In this article,
we are motivated to clarify our design, revisit the crypto-analysis, and shed insight onto
both protocol design and network practices.

Our main conclusion drawn from the corrected crypto-analysis is that the key search
attack is valid only under strong assumptions, and thus unmountable in practice. The
fundamental reason is that this attack requires the adversary to arbitrarily manipulate
the secret share update process, which is not allowed in URSA at the first place. More-
over, because the secret shares are updated periodically, to launch the key search attack,
the adversary has no choice other than waiting for the scheduled share update opera-
tions. That is, the paramount factor that limits the adversary is not the computational
capability any more, but the network operational lifetime. For example, even the origi-
nal analysis in [2] shows that the adversary needs 328 runs of share update to break the
system, i.e., almost 6 months with a typical setting of two share updates per day. While
this is sufficient for most ephemeral ad-hoc networks, our corrected crypto-analysis also
validates the security of URSA even in a network that lasts as long as 6 years.

It is important to note that our crypto-analysis, as well as that in [6, 2], applies only
to the specific threshold RSA algorithm, TS-RSA, described in [4, 5]. We emphasize that
the URSA architecture and protocol suite are not bound to any threshold cryptosystems,
and their strength in terms of network performance (except than the associated com-
putational overhead) holds when we apply other cryptographic primitives. In fact, the
history of security design has seen many examples of such algorithm evolution. For ex-
ample, in the course of Pretty Good Privacy (PGP), the Bass-O-Matic algorithm used
in the initial PGP release was soon replaced with IDEA in PGP 2, and further enhanced
by CAST and Triple-DES in PGP 5. Nevertheless, the architecture of PGP remains the
same and has been widely accepted in many contexts.

While our analysis demonstrates the security of TS-RSA in realistic networking sce-
narios, we do not claim, by any means, that TS-RSA is provably secure or the only choice
for the URSA architecture. In fact, alternative URSA implementations [7, 6] based on
DSS and BLS signature schemes have recently been reported. However, a crypto-analysis
of these schemes or a comparative study is out of scope in this article.

2 On key-search attack on TS-RSA

A recent draft from Jarecki et al. [2] presented an interesting attack against URSA
based on TS-RSA, which we term as the key search attack. In this attack, the adversary
compromises K − 1 nodes1, and these compromised nodes do not exhibit any malicious

1Recall that K is the critical security parameter in URSA. The global secret key SK is shared by all
nodes through a polynomial of degree K − 1. As a result, a group of K nodes can jointly recover SK or

2



behavior (e.g., dropping packets or jamming) to avoid being evicted; instead, they prop-
erly participate in the network and perform passive attacks to discover the global secret
key SK. The key search attack consists of two interleaved subattacks:

• Attacks against multisignature protocol : The K − 1 compromised nodes frequently
renew their tickets, and ensure that each new ticket is jointly signed by the K − 1
compromised nodes and one legitimate node. The multi-signature protocol used
for ticket renewal involves the execution of a k-bounded offsetting algorithm. By
checking the results yielded by this algorithm, the adversary knows whether SK is
larger or smaller than a particular value, which is fixed for a given signing group.
This information can be used to search the key space. Between two consecutive
share updates, the adversary may narrow the search interval by a factor of K + 1.

• Attacks against share update protocol : In a share update operation, if one malicious
node happens to reside in the initial K-nodes community, it speaks last in this
community to influence the share update polynomial into an arbitrary form that
the adversary desires. This way, the adversary can continue the above search in
the subsequent time period before the next share update.

The authors of [2] performed a crypto-analysis on the key search attack, and showed
negative results on the security of TS-RSA based URSA. While such crypto-analysis
is undoubtedly useful in a thorough evaluation of TS-RSA based URSA, we disagree
to their conclusion mainly because their analysis is based on several misunderstanding
about the design, and overlooks the practical constrains in real networks. A corrected
crypto-analysis, as we will present below, actually shows that URSA is secure against
the key search attack in practice.

2.1 Periodic Share Update

The analysis in [2] misunderstands the purposes and mechanisms of secret share update
in TS-RSA based URSA. The share update protocol was designed to refresh the system
and wipe out the secret shares possessed by the evicted malicious nodes, rather than “de-
fending against mobile adversaries” (Section 3.3 in [2]). Instead, such mobile adversaries
are handled in URSA by ticket revocation, either implicitly through ticket expiration or
explicitly. More important, [2] claims that “The share updates can be both proactive
(periodic) as well as reactive, due to revocations of some players from the group” (Sec-
tions 2 and 5). This claim is also wrong. There is no reactive share update in URSA;
instead, we only periodically update the shares in the network.

The above clarification has significant implications on the conclusion that one can
draw from the analysis. Even with the original analysis in [2] (which is flawed as we
will describe shortly), the adversary needs 328 executions of the share update protocol
to succeed. Given that share update is performed infrequently, say twice per day, this
simply means that the adversary has to wait for 164 days, i.e., 5.5 months, to break
the system. Note that this is already sufficient for most MANETs that are not long-
lasting by nature. Even for MANETs with 5.5 months or longer life time, way before the

sign a ticket using SK, but less than K nodes can never do that.

3



attacker succeeds a rekeying should be scheduled, as most practical security systems do.
As such, the sole periodical mode of share updates implies that the dominating factor
in evaluating this attack is not the adversary’s computational capability as in most
theoretical crypto-analysis, but the network operational lifetime as a practical metric.

In the next subsection, we will show that the analysis in [2] is based on yet another
misunderstanding about URSA, and the adversary actually needs orders of magnitude
more rounds of share updates to break the system than their original results. Neverthe-
less, as a side note, we mention that the numeric examples used in [2] are misleading
because of improper parameter settings. For example, the public exponent e is set as 3 in
deriving the results of “157 runs of the update protocol (to break the system)” (Section
5 in [2]). However, in our publications, the recommended value for e is 65537, and all our
experimental evaluations are based on this value (e.g., Section 6 in [4]). Needless to say,
the security strength of any cryptosystem in practice directly depends on the security
parameter settings. For example, even with the Triple-DES algorithm, which is believed
as one of the most secure encryption algorithms to date, a 20-bit key still poses severe
security threats. However, it is the key setup rather than the Triple-DES algorithm that
should take the blame.

2.2 Two-stage Share Update

As described before, the key search attack consists of two interleaved attacks against the
multisignature protocol and the share update protocol, respectively. In its original form
in [2], the first attack enables the adversary to determine a few bits (3 bits when K = 7) in
SK between two consecutive share updates, and the second attack allows the adversary
to continue to search the key space in an optimal way, by manipulating the share update
polynomial into any form that he desires. Thus, an important question arises as follows:
Whether the adversary can completely control the share update polynomial? Note that
the answer is critical in evaluating the effectiveness of key search attack: A negative one
simply breaks the original chain of attacks, and the adversary would gain nothing more
than the first few bits in SK, which is almost negligible information given that SK can
be 1024 or more bits.

In answering the above question, [2] claims that “The attack (against share update
protocol) succeeds as long as the adversary corrupts at least one player from the group of
players that create the share updating polynomial, and as long as that player can speak
last in share update protocol” (Section 4.3). However, this claim is wrong because it
misunderstands how the two-stage share update protocol in URSA works. In fact, the
adversary has at most a chance of K

N to completely control the share update polynomial,
where N is the total number of nodes in the network.

For clarification purposes, we briefly overview our two-stage share update protocol as
follows. In each periodical update, any K neighboring nodes can form a local community
and update the entire network in two stages.

• Stage 1: The K nodes jointly generate an update polynomial and update their own
shares, using Herzberg’s proactive share update algorithm[1].

• Stage 2: The share update polynomial, signed by SK, is propagated in the network,
so that each and every node gets updated.

4



There are actually two options for stage 2. The other option is to follow the self-
initilization process to update the rest of the network. However, the choice of specific
mechanism for stage 2 is not important for our analysis below.

Because such a K-nodes community is formed locally, there exist multiple communi-
ties that all initiate the above process. In order to reach network-wide agreement on the
share update polynomial, the unique node IDs can be used to arbitrate which community
wins over the others. A simple rule, as stated in [3], is a lowest-ID one: the community
with the lowest-ID node wins in deciding the share update polynomial.

Now we can see why the claim about the share update attack in [2] is wrong. In the
scenario that it argues, the adversary controls K − 1 nodes, while one of them resides
in a K-nodes community and speaks last in the community. Let Γ denote the group of
K − 1 compromised nodes, Ω denote the K-nodes community, and B denote the single
compromised node in Ω. Note that B has to announce its partial polynomial in Stage 1.
However, in this stage, the adversary knows only one sample point on each of the K − 1
partial polynomials2 contributed by Ω\{B}, because the K − 2 compromised nodes in
Γ\{B} have not received any polynomial yet. Therefore, even if B speaks last in Ω,
the adversary can only set new shares for set B arbitrarily, but he can never predict or
decide the new shares of the K − 2 compromised nodes in Γ\{B}. This shows that the
share update attack, in particular the optimal setting of new shares for the compromised
nodes, is invalid as presented in [2].

2.2.1 Corrected Crypto-analysis

Given that the original attack described in [2] is invalid, we now go one step further to
see whether it can revised into a sound attack. While a full exploration of this issue
remains an open problem, we provide below one such revision as our initial efforts.

In the revised attack, the adversary has to put all K − 1 compromised nodes in one
local neighborhood, so that they can form a K-nodes group with one another legitimate
node. Only based on the K − 1 samples obtained by those K − 1 compromised nodes in
the group, the adversary can recover the update polynomial contributed by the legitimate
node. In this scenario, the attacker can have one compromised node to speak last, so
arbitrate the aggregated polynomial to set the new shares of all K − 1 compromised
nodes.

However, even with the revised attack, the adversary cannot succeed all the time.
This is because the adversary can control at most one group with K − 1 compromised
nodes. Meanwhile, multiple K-nodes communities co-exist in the network and compete
with each other in deciding the ultimate share update polynomial. With the lowest-ID
rule, the adversary succeeds only if the node with the lowest ID happens to reside in the
community under his control. When the adversary cannot selectively compromise nodes,
i.e., corrupting any K − 1 nodes as he wishes, the chance of a successful share update
attack is roughly K

N , in which N is the total number of nodes in the network.
Even if the adversary is able to selectively compromise nodes, the above result still

holds with very simple design extensions such as a lowest-ID-hash rule. In this rule, we
apply a secure hash function (e.g., MD5) on the node IDs, and the community with the

2A share update polynomial has a degree of K − 1, but the constant coefficient is zero. Therefore, to
recover this polynomial, the adversary needs to know at least K − 2 samples.

5



lowest-ID-hash node wins over the others. This way, the adversary cannot derive which
node he should compromise to guarantee the success of share update attacks.

With the corrected crypto-analysis, the adversary needs significantly more runs of
share update to break the system than the original results in [2]. Specifically, the number
of required runs increases by at least a factor of N

K . This simply implies that TS-RSA
based URSA can securely operate for a much longer period of time. For example, in
a typical setting of K = 7 and N = 100, the allowed network operational lifetime
increases by at least a factor of 14. Given the original result of 5.5 months to break the
system in Section 2.1, the corrected crypto-analysis actually shows that the network can
continuously operate for 77 months, i.e., more than 6 years. We believe that this is long
enough in practice before the global public/secret key pair is reset, say once per year.

3 Conclusion

To this end, we have clarified several misunderstandings in the recent crypto-analysis on
URSA, and demonstrated the security of our TS-RSA algorithm in the realistic network-
ing scenarios. As argued by Bruce Schneier, “In theory there is no difference between
theory and practice. In practice there is.”[8]. We believe that the network security re-
search should benefit from the collaborative efforts from both cryptograph and network
communities. Yet we also believe that in designing and analyzing a network security sys-
tem, it is critical to understand the practicality and applicability of theoretical results.
Put aside the network and system performance issues which can be dominant in practice,
the lessons provided in this article certainly is one example that a theoretically strong
attack becomes almost invalid in practice with careful protocol designs.

References

[1] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive Secret Sharing or:
How to Cope with Perpetual Leakage. extended abstract, IBM T.J. Watson Research
Center, November 1995.

[2] S. Jarecki, N. Saxena, and J. H. Yi. Cryptanalysis of the Proactive RSA Signature
Scheme in the URSA Ad-Hoc Network Access Control Protocol. In submssion, 2004.

[3] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing Robust and Ubiquitous
Security Support for Mobile Ad-hoc Networks. In IEEE ICNP’01, pages 251–260,
2001.

[4] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang. URSA: Ubiquitous and Robust Ac-
cess Control for Mobile Ad Hoc Networks. IEEE/ACM Transactions on Networking,
to appear.

[5] H. Luo and S. Lu. Ubiquitous and Robust Authentication Services for Ad Hoc
Wireless Networks. Technical Report TR-200030, Dept. of Computer Science, UCLA,
2000.

6



[6] N. Saxena, G. Tsudik, and J. Yi. Admission Control in Peer-to-Peer: Design and
Performance Evaluation. In ACM Workshop on Security of Ad Hoc and Sensor
Networks (SASN), pages 104–114, 2003.

[7] N. Saxena, G. Tsudik, and J. Yi. Group Memberships as a Resource: Decentralized
Admission and Eviction. In submission, 2004.

[8] B. Schneier. Secret and Lies, Digital Security in a Networked World. Wiley Computer
Publishing, 2000.

7


