
1

SCAN: Self-Organized Network-Layer Security in
Mobile Ad Hoc Networks
Hao Yang, James Shu, Xiaoqiao Meng, Songwu Lu

Abstract— Protecting the network layer from malicious attacks
is an important yet challenging security issue in mobile ad hoc
networks. In this paper we describe SCAN, a unified network-
layer security solution for such networks that protects both rout-
ing and data forwarding operations through the same reactive
approach. SCAN does not apply any cryptographic primitives on
the routing messages. Instead, it protects the network by detecting
and reacting to the malicious nodes. In SCAN, local neighboring
nodes collaboratively monitor each other and sustain each other,
while no single node is superior to the others. SCAN also adopts
a novel credit strategy to decrease its overhead as time evolves.
In essence, SCAN exploitslocalized collaborationand information
cross-validationto protect the network in a self-organized manner.
Through both analysis and simulation results we demonstrate
the effectiveness of SCAN even in a highly mobile and hostile
environment.

Index Terms— Self-organized security, mobile ad-hoc network,
network-layer security.

I. I NTRODUCTION

An ad hoc network is a group of mobile wireless nodes
that cooperate and forward packets for each other. Such net-
works extend the limited wireless transmission range of each
node by multihop packet forwarding, thus well suited for the
scenarios in which pre-deployed infrastructure support is not
available, for example, emergency relief, military operations,
and terrorism response. Security is one crucial requirement for
these mission-critical applications.

In this paper we tackle an important security issue in ad hoc
networks, namely the protection of their network-layer opera-
tions from malicious attacks. We focus on securing the packet
delivery functionality because it is the premise for the multihop
connectivity between two faraway nodes. Without appropriate
protection, the malicious nodes can readily function as routers
and prevent the network from correctly delivering the packets.
For example, the malicious nodes can announce incorrect
routing updates which are then propagated in the network,
or drop all the packets passing through them. Several recent
studies [1]–[4] have provided detailed description on such
network-layer security threats and their consequences.

In ad hoc networks, multihop packet delivery is achieved
through two closely related network-layer operations: ad hoc

Manuscript received October 1, 2004; revised August 15, 2005. This work
was supported in part by NSF CAREER program under grant ANI-0093484
and in part by DARPA SensIT program under contract DABT63-99-1-0010.

H. Yang is with the Computer Science Department, University of California,
Los Angeles, CA 90095 (email: hyang@cs.ucla.edu).

J. Shu is with the Northrop Grumman Corporation, San Pedro, CA, 90731
(email: James.shu@gmail.com).

X. Meng and S. Lu are with the Computer Science Department, Uni-
versity of California, Los Angeles, CA 90095 (email: xqmeng@cs.ucla.edu,
slu@cs.ucla.edu).

routing and packet forwarding. As a result, the security so-
lution should encompass the protection of both. The secure
ad hoc routing problem has been extensively researched and
a number of secure routing protocols have been proposed in
the literature, to name a few, Ariadne [4], SEAD [5], SRP
[6], ARAN [7], and SAODV [8]. All these protocols focus
on protecting the correctness of the routing table maintained
at each node, while leaving packet forwarding largely unpro-
tected. Moreover, they typically protect the routing messages
through various cryptographic primitives, resulting in constant
and non-trivial routing overhead in terms of both computation
and communication. The companion key management problem
is also challenging due to the self-organized nature of ad hoc
networks [9]. On the other hand, the secure packet forwarding
problem has received relatively little attention. While Watch-
dog and Pathrater [1] can mitigate the detrimental effects of
packet drop in the context of DSR [10], its applicability in
the distance-vector routing protocols, such as AODV [11] and
SAODV [8], is not addressed yet. The fundamental problem is
that, due to their strong interdependency, routing and packet
forwarding should be protected together.

To this end, we present a network-layer security solution,
called SCAN, that protects the control-plane (i.e., ad hoc rout-
ing) and the data-plane (i.e., packet forwarding) operations in
a unified framework. SCAN does not apply any cryptographic
primitives on the routing messages. Instead, it protects routing
and packet forwarding through a samereactiveapproach, in
which local neighboring nodes collaboratively sustain each
other, monitor each other, and react to occasional attacks in
their vicinity.

In SCAN, each node monitors the routing and packet for-
warding behavior of its neighbors, and independently detects
any malicious nodes in its own neighborhood. The monitoring
mechanism takes advantage of the broadcast nature of wireless
communication. In a network with reasonable node density,
one node can often overhear the packets (including both
routing updates and data packets) received as well as the
packets sent by a neighboring node. In such cases, it cancross-
checkthese packets to discover whether this neighbor behaves
normally in advertising routing updates and forwarding data
packets. We exemplify this idea in the context of AODV rout-
ing protocol [11], but its principal is applicable to other routing
protocols as well (to be elaborated in Section VII). In order
to enable such cross-checking, we modify the AODV protocol
and add a new field,nexthop, in the routing messages, so that
a node can correlate the overheard packets accordingly.

While each node monitors its neighbors independently, all
nodes in a local neighborhood collaborate with each other to



2

eventually convict a suspicious node. This is achieved by a
distributed consensus mechanism, in which a node is convicted
only when its multiple neighbors have reached such a consen-
sus. The motivation is that a single node may have inaccurate
monitoring results due to node mobility, interference, channel
error, etc., and the malicious nodes may intentionally accuse
legitimate nodes. The distributed consensus mechanism signif-
icantly decreases the chance of falsely accusing a legitimate
node, while maintaining a high probability of convicting the
malicious nodes.

Once a malicious node is convicted by its neighbors, the
network reacts by depriving its right to access the network.
In SCAN, each node must possess a valid token in order
to interact with other nodes and participate in the network.
The token of a convicted malicious node will be revoked. We
use asymmetric cryptography to prevent the forgery of tokens.
Specifically, each token is signed by the same secret key so
that it can be verified by a system-wide public key known to
all nodes. We utilize a distributed mechanism similar to [3] in
issuing and renewing the tokens. In this scheme, a group of
nodes can collaboratively sign a token while no single node
can do so, and each node renews the token from its neighbors
once its current token expires.

To control the overhead of SCAN, we exploit a novel credit
strategy in determining the token lifetime for each node. The
more credits a node has, the longer time its token is valid for. A
newly joined node has zero credit, hence is granted temporary
admission into the network by obtaining a token that expires
soon. The legitimate nodes are rewarded with credits at each
time they successfully renew their tokens. Therefore, as time
evolves, a well-behaving node renews its token less and less
frequently by accumulating its credits. On the other hand, a
malicious node is eventually detected by its neighbors and
denied of network access as its token is revoked.

In essence, SCAN exploits two ideas to protect the mobile
ad hoc networks: 1)local collaboration: the neighboring
nodes collectively monitor each other and sustain each other;
and 2) information cross-validation: each node monitors its
neighbors by cross-checking the overheard transmissions, and
the monitoring results from different nodes are further cross-
validated. As a result, the security solution is self-organized,
distributed, and fully localized.

We demonstrate the effectiveness of SCAN through both
analysis and simulation results. We show that even if30% of
the nodes are malicious and the maximum mobility speed is
20m/s, SCAN can detect92% of the malicious nodes and
increase the goodput by more than150%. While maintaining
this desired security strength in most scenarios, the overhead
of SCAN gracefully adapts to the network status, such as node
mobility speed and the number of malicious nodes. However,
one drawback of SCAN is that the legitimate nodes also have a
non-zero, though quite small, probability of being incorrectly
accused. Both analysis and simulation results show that there
is a fundamental tradeoff between the detection power and the
false accusation probability.

The rest of this paper is organized as follows. Section II
provides the background on the AODV routing protocol. Sec-
tion III formulates the network and security models. Section

IV describes the SCAN design in details. Section V analyzes
the overhead of SCAN, and Section VI presents the simulation
evaluation usingns-2network simulator. Section VII explains
our design rationale and discusses several important issues.
Section VIII reviews and compares to the related work, and
Section IX concludes the paper.

II. AODV ROUTING PROTOCOL

We briefly overview the AODV routing protocol [11] in this
section. AODV has been one of the most popular on-demand
ad hoc routing protocols studied in the research community
and IETF [12]–[14]. In Section IV-B, we will use it as the
context to illustrate how to monitor routing behavior.

The path discovery process in AODV is entirely on-demand.
When a source node needs to send packets to a destination
to which it has no available route, it broadcasts a RREQ
(Route Request) packet to its neighbors. Each node maintains
a monotonically increasing sequence number to ensure loop-
free routing and supersede stale route cache. The source node
includes the known sequence number of the destination in
the RREQ packet. The intermediate node receiving a RREQ
packet checks its routing table entries. If it possesses a route
toward the destination with greater sequence number than that
in the RREQ packet, it unicasts a RREP (Route Reply) packet
back to its neighbor from which it received the RREQ packet.
Otherwise, it sets up the reverse path and then rebroadcasts the
RREQ packet. Duplicate RREQ packets received by one node
are silently dropped. This way, the RREQ packet is flooded in
a controlled manner in the network, and it eventually arrives
at the destination itself or a node that can supply a fresh route
to the destination, which then generates the RREP packet. As
the RREP packet is propagated along the reverse path to the
source, the intermediate nodes update their routing tables using
distributed Bellman-Ford algorithm with additional constraint
on the sequence number, and set up the forward path.

AODV includes a path maintenance mechanism to handle
the dynamics in the network topology. Link failures can be
detected by either periodic beacons or link layer acknowledg-
ments, such as those provided by 802.11 MAC protocol [15].
Once a link is broken, an unsolicited RREP packet with a fresh
sequence number and infinite hop count is propagated to all
active source nodes that are currently using this link. When a
source node receives the notification of a broken link, it may
restart the path discovery process if it still needs a route to
the destination.

III. M ODELS AND ASSUMPTIONS

In this section we formulate the network model and the
security model, then describe our design assumptions.

A. Network Model

We consider a wireless mobile ad hoc network consisting
of an unconstrained number of networking nodes. Each node
may freely roam, or remain stationary in a location for an
extended period of time. In addition, each node may join the
network, leave the network, or fail at any time. The nodes



3

perform peer-to-peer communication over shared, bandwidth-
constrained, error-prone, and multi-hop wireless channel. For
differentiation purpose, we require each node to have a unique
non-zero ID.

The communication in the network is bi-directional, i.e., two
nodes within the wireless transmission range may communi-
cate with each other. This is also required by most wireless
Medium Access Control (MAC) protocols such as 802.11 [15].
However, the wireless channel may be lossy, asymmetric, and
prone to interference, as shown in the recent measurements
results [16].

We assume that each node’s wireless interface may operate
in the promiscuous mode in the link layer, that is, it can over-
hear ongoing communications within its wireless transmission
range. Most existing 802.11-based wireless cards can readily
support such a promiscuous mode. In practice, security and
privacy concerns may arise when a node can overhear packets
that are not destined to itself. This is typically addressed
by end-to-end or link-layer encryption. We stress that our
design does not require the nodes to understand the semantics
of the overheard data packets, thus can work well in the
presence of various encryption mechanisms. The promiscuous
mode may also incur extra computation overhead and energy
consumption in order to process the transit packets. However,
the energy efficiency issue is out of the scope in this work.

B. Security Model

In an unprotected mobile ad hoc network, a malicious node
may readily participate as a router and disrupt the network-
layer packet delivery functionality. Because multihop packet
delivery is achieved through ad hoc routing on the control
plane and packet forwarding on the data plane, attacks on
either of them can lead the network into malfunction. In this
section, we explicitly distinguish the vulnerabilities in routing
and packet forwarding, and consider a generic network-layer
attack model. In this model, the malicious nodes can launch
any or both of two broad categories of attacks:routing
misbehaviorandpacket forwarding misbehavior.

The routing misbehaviorrefers to any action of advertising
routing information that does not follow the specifications of
the routing protocol. The maneuver that the malicious nodes
may take is protocol-dependent. In the context of AODV, a
malicious node may advertise a route with a distance metric
smaller than its actual distance to the destination; it may
advertise a route with a large sequence number and invalidate
all routing updates from other nodes; it may also initiate rout-
ing discovery very frequently to waste the network resource
[8]. Multiple colluding attackers may create route loops by
introducing shortcuts in the network, known aswormhole
attacks [17]. Consequently, the malicious nodes can force a
source node to use a “dangerous” route which is under their
control. The legitimate nodes are prevented from discovering
optimal routes or in the worse case, any available route.

On the other hand, thepacket forwarding misbehaviorrefers
to any intentional disruption of the data forwarding activity.
This is independent of the underlying routing protocol. For
example, the malicious nodes along an active route may

drop the packets, resend the (altered) packets, or inject other
packets. They may also pump lots of dummy packets into
the network as a brute-force form of network-layer denial-of-
service (DoS) attack. Furthermore, they may adopt more tricky
strategies, for example, dropping the packets in a probabilistic
manner instead of blindly dropping all packets. As a result,
the packets from legitimate nodes cannot reach the destination
even if a route has been correctly established. The network
resource is wasted, and severe network congestion and channel
contention may occur in the network.

In this work we consider an attacker who can perform any
combination of attacks that are within the above generic attack
model. We do not address passive attackers who eavesdrop
and record the wireless transmission. We assume that multiple
attackers may co-exist in the network, and several attackers
may even collude with each other. However, we assume that
each group of colluding attackers has less thank nodes,
wherek is a design parameter (to be introduced in IV-A). We
also assume that the attacker cannot impersonate a legitimate
node by forging its ID, which can achieved through existing
message authentication mechanisms [15], [18].

We do not address node selfishness in this work. We refer to
recent publications [19]–[21] on how to stimulate cooperation
in an ad hoc network. We largely neglect security threats in the
physical layer and the link layer. Such lower-layer attacks can
be limited by mechanisms such as the spread-spectrum tech-
nology, the WEP protocol, and MAC misbehavior handling
mechanisms [22].

IV. SCAN DESIGN

In this section we present the SCAN design in details. In
order to protect the packet delivery functionality, each SCAN
node overhears the wireless channel in the promiscuous mode,
and monitors the routing and packet forwarding behavior of
its neighbors at all time. The monitoring results at different
nodes in a local neighborhood are cross-validated. A malicious
node is convicted when its neighbors have reached such a
consensus, then it is deprived of the network membership and
isolated in the network. In order to enforce the network access,
each legitimate node carries a valid token which certified,
unexpired, and not revoked, while any node without a valid
token is denied of participation in the network operations. A
legitimate node can always renew the token from its neighbors
before its current token expires. However, when a malicious
node is convicted, its neighbors collectively revoke its current
token and inform all other nodes in the network. The above
SCAN framework is illustrated in Figure 1, which has the
following three components:

• Collaborative Monitoring: all nodes within a local neigh-
borhood collaboratively monitor each other.

• Token Renewal: all legitimate nodes in a local neighbor-
hood collaboratively renew the tokens for each other.

• Token Revocation: the neighbors of a malicious node,
upon consensus, collaboratively revoke its current token.

In this framework, the malicious nodes are detected and
convicted via the collaborative monitoring mechanism, which
collects and analyzes each node’s behavior in the routing and



4

Routing Packet Forwarding

Network Layer

Collaborative Monitoring

Token Revocation

Security Solution

Token Renewal

Fig. 1. The SCAN framework: components and interactions.

packet forwarding activities. The token revocation mechanism
reacts to occasional attacks launched by the malicious nodes
by revoking their tokens and alerting the network. This proac-
tively prevents a convicted attacker from further disrupting
the network operations, because without a valid token, it can
not participate in the network any more. The token renewal
mechanism ensures that legitimate nodes can continue to stay
in the network by renewing their token from time to time.

The above seemingly simple operations pose several re-
search challenges. For example, how can we provide “anytime,
anywhere” token renewal with low overhead? How can each
node monitor the behavior of its neighbors? How accurate the
monitoring results are, and how can we improve this accuracy?
Given that the malicious nodes may roam in the network,
what is the effective way to isolate them in the network? The
remaining of this section will address each of these questions
in details. We start with the token renewal process in Section
IV-A, and present the collaborative monitoring mechanism in
Section IV-B. Token revocation is described in Section IV-C.
Finally we summarize the SCAN design in Section IV-D.

A. Token Renewal

SCAN implements its token renewal operations based on an
earlier proposal of distributed certification service for mobile
ad hoc networks [3]. In order to communicate with other nodes
in the network, each legitimate node carries a token which
contains the following three fields<owner id, signingtime,
expiration time>. The tokens are protected by the public-key
cryptographic primitives. There is a single key pairPK/SK
in the network. The public keyPK is known to all nodes
when they join the network, while the secret keySK is used
to sign each token. Since the token is certified and bound to
the owner’s unique ID, a malicious node can not fabricate a
token or steal the token from another legitimate node.

In [3], no single node knows the secret keySK, hence has
the authority of signing the tokens. Instead, such an authority
is distributed equally into each node in the network. This is
realized by exploiting a polynomial secret sharing scheme1, in
which each node shares the secret keySK by a polynomial
of orderk − 1, wherek is a design parameter. As a result, a
group ofk nodes can collaborate to sign a token withSK, but

1Due to space limits, we refer to [3] for the cryptographic implementation
of this scheme.

� � �
� � �

� �
� �

� � �
� � �

� �
� �

� � �� � �� � �� � �� � �

� �� �� �� �� �

� � �
� � �
� � �
� � �

� � �
� � �

	 	
	 	 
 
 



 
 

� � �
� � �

A

TREP

TREP

TREP

TREQ
TREP

TREP

Fig. 2. Message handshake in the localized token issuing process.

a group of less thank nodes can never do so. This way, the
certification service can resist up tok− 1 colluding malicious
nodes in the network.

Before the current token expires, each node solicits its local
(typically one-hop or two-hop) neighbors to renew its token.
The message handshake in this localized token renewal process
is illustrated in Figure 2. The node that needs token renewal
broadcasts a TREQ (Token Request) packet, which contains its
current token and a timestamp. As we will describe in Section
IV-C, each node keeps a Token Revocation List (TRL) based
on the token revocation mechanism. When a node receives a
TREQ packet, the TRL is used to decide whether to serve the
request or not.

Specifically, when a node receives a TREQ packet from
its neighbor, it extracts the token from the packet. It checks
whether the token has already been revoked by comparing it
with the TRL. If the token is still valid yet about to expire,
it constructs a new token withowner id equal to that in
the old token,signing time equal to the timestamp in the
TREQ packet. Theexpiration time is determined by the credit
strategy described below. It then signs the newly constructed
token using its own share of SK, encapsulates the partially
signed token in a TREP (Token Reply) packet, and then
unicasts the TREP packet back to the node from which it
received the TREQ packet. TREQ packets containing revoked
tokens are silently dropped. When the requesting node receives
k TREP packets from different neighbors, it combines these
partially signed tokens into a single token signed withSK.

1) Credit Strategy in Token Lifetime:Now we consider how
to determine the token lifetime, i.e., theexpiration timefield in
a token. Since the token must be renewed once it expires, the
legitimate nodes may be penalized by the computation and
communication overhead associated with the token renewal
process. From this perspective, one might think that long
lifetime for tokens be desirable. However, once a token with
long lifetime is revoked, it has to be kept by each node in
its TRL for a long period of time until it expires, resulting in
an increased length of the TRL. Therefore, the token lifetime
represents a tradeoff between the overhead and the number of
states kept at each node.

We propose a novel credit strategy to determine the token
lifetime, which can decrease the token renewal overhead as
time evolves yet keep the TRL length bounded by a constant
factor. In this strategy, a newly joined node is issued a token
with short lifetime. It accumulates its credit when it remains to



5

behave well in the network, and its subsequent token lifetime
depends on its credit at the renewal time. The more credit
one node has, the longer lifetime its token has. This way, a
legitimate node will have its token lifetime steadily increased
over time, thus renewing its token less and less frequently.

Our credit strategy is implemented by additively increasing
the token lifetime each time a node renews its token. LetT1,
T2, T3, T4 denote thesigning time and expiration time fields
in the previous and renewed tokens, respectively. The additive
increase algorithm simply states thatT4−T3 = T2−T1 +T0.
That is, each time a legitimate node renews its token, its token
lifetime increases byT0.

With the assumption that the probability of a node being an
attacker is reciprocal to the duration of the time it has stayed
in the network with well behavior2, we can show the benefit
of the credit strategy by comparing it to the constant lifetime
strategy, which always sets the token lifetime asT0.

In the credit strategy case, when a node receives itsn-th
token, the duration of the time it has stayed in the network3 is
TL =

∑n−1
i=1 iT0 = n(n−1)T0

2 . Thus, a node that has stayed in
the network for a duration of timeT needs to renew its token
for N1 ≈

√
2T
T0

times. On the contrary, in the constant lifetime
strategy case, the same node has to renew its token forN2 =
T
T0

times. We can see thatN2 ≈ N2
1

2 , which demonstrates the
significant savings in the token renewal overhead.

While the credit strategy gradually increases the token
lifetime for the long-lived and well-behaving nodes, it does
not impose heavy burden on the revocation states that each
node has to keep. In fact, the expected time of a node’sn-th
token kept in the TRL is

TC =
∫ TL+nT0

TL

TL + nT0 − t

t
dt

<

∫ TL+nT0

TL

TL + nT0 − t

TL
dt =

nT0

n− 1
(1)

which is asymptotically bounded byT0. Hence, the expected
length of the TRL is also bounded by a constant number. In
essence, the credit strategy takes advantages of the character-
istics of node behavior, and rewards well-behaving nodes by
decreasing their token renewal overhead.

2) Avoid Synchronization of Token Renewal:In order to
avoid synchronized token renewal requests among the nodes,
we introduce randomization in the timers that they associate
with such requests. LetTs andTe denote thesigning timeand
expiration time fields in a node’s current token, respectively.
Instead of requesting token renewal exactly beforeTe, the node
randomly picks up a valuêTe with uniform distribution over
[0.2 ∗ Ts + 0.8 ∗ Te, Te], and broadcasts the TREQ packet at
time T̂e.

2This assumption is motivated by the analogy of how the credit card
companies set up the credit line for their customers. We admit that it is
a simplified model for the user behavior. However, it indeed reflects some
characteristics of the attackers in that they usually will not stay and behave
well in the network for a long time.

3For simplicity of representation, we assume that the period of validity of
the first token isT0.

B. Collaborative Monitoring

The collaborative monitoring mechanism in SCAN monitors
the routing and packet forwarding operations of each node
in a fully decentralized and localized manner. Each node
overhears the channel, monitors the behavior of its neighbors,
and discovers consistent misbehavior as indications of attacks.
Moreover, local neighboring nodes collaborate with each other
to improve the monitoring accuracy. We exemplify this mech-
anism in the context of AODV routing protocol [11]. However,
as we shall discuss in Section VII, it can be easily extended to
accommodate other ad hoc routing protocols. Below we first
describe how a single node monitors its neighbor’s routing
and packet forwarding behavior in Section IV-B.1 and Section
IV-B.2 respectively, then introduce distributed collaborative
consensus in Section IV-B.3.

1) Monitor Routing Behavior:Our basic idea is to overhear
the channel andcross-checkthe routing messages announced
by different nodes. This can be applied to any distributed
and deterministic routing protocol. In such protocols, the
routing activity of a node is a three-step process : a) receiving
routing updates from neighboring nodes as inputs to a routing
algorithm; b) executing the routing algorithm; c) announcing
the output of the routing algorithm as its own routing updates.
The monitoring task is to verify whether the routing algorithm
executed by a node follows the protocol specifications. In other
words, the trustworthiness of a routing message, as the output
of the routing algorithm, can be examined when the monitoring
node knows the input to the algorithm, since the algorithm
itself is publicly known and deterministic.

We exemplify this idea in the context of AODV, in which the
routing algorithm is essentially the distributed Bellman-Ford
algorithm with constraints on sequence number. Unfortunately,
by overhearing a routing update, an AODV node cannot obtain
enough information about the routing algorithm’s input on the
advertiser side. The key reason is that thenext hopinformation
is missing in the AODV routing messages. Thus, when a node
announces a routing update, its neighbors have no clue about
which node is the next hop in the route, and hence cannot
judge on its input to the routing algorithm, i.e., the original
routing update on which its routing computation is based.

In order to enable the cross-checking of routing updates,
we make two modifications to AODV. First, we add one more
field, nexthop, in the RREP packet. Similarly, we add one
more field,previoushop, in the RREQ packet. This way, each
node explicitly claims its next hop in a route when it advertises
routing updates. Secondly, each node keeps track of the routing
updates previously announced by its neighbors. Essentially
each node maintains part of the routing tables of its neighbors.
This redundancy of routing information makes it possible for a
node to examine the trustworthiness of future routing updates
from its neighbors.

Figure 3 illustrates how a node can cross-check the routing
updates and examine their trustworthiness. Suppose that node
M is a neighbor of, and hence monitors, both nodeX and node
Y . M has kept track of the route entries previously announced
by Y . WhenM receives a new routing update fromX which
claims Y as the next hop,M can examine this update by



6

� � �� � �� � �� � �

� � �� � �� � �� � �

� � �� � �� � �� � �

� � �� � �� � �� � �

� � �
� � �
� � �

� �
� �
� � � �

� �
� �
� �

Y
RREP

RREP

D

M

X

A

Fig. 3. Each node can monitor the routing behavior of its neighbors
by cross-checking the overheard routing updates.

comparing it with the route entry announced byY earlier. We
can view this checking process as ifM were reconstructing
the routing algorithm execution performed byX. Because the
two executions (one is the real execution performed byX,
another is the “virtual” execution performed byM ) have the
same input into the same algorithm, they should generate the
same results. Any inconsistency between them means thatX
did not correctly follow the protocol specifications.

Take one field,hop cnt, as an example. Suppose thatY
previously announced a route toward destinationD with
hop cnt as 2. NowX announces a new routing update toward
D with hop cnt as 1, claiming that its next hop isY . M
can readily detect this routing misbehavior, because based on
the route announced byY , it can predict the correct distance
from X to D via Y to be 3. The same idea can be applied to
examine other fields in the routing updates as well.

The cross-checking of routing updates is only performed at
the common neighbors of one node and its next hop node.
Consider again the scenario in Figure 3. WhenA receives the
routing update fromX, it cannot tell whether this update is
trustworthy or not, because it has no information about the
next hop node,Y , in the offered route. In this case,A skips
the cross-checking process.

The proposed routing misbehavior monitoring mechanism
avoids cryptographic operations on the routing messages.
Compared to the secure routing approach, this crypto-free
feature can significantly reduce the computation and commu-
nication overhead. However, it also has disadvantages in that it
might not work well in several cases: 1)Y has only stayed in
M ’s neighborhood for a short period of time due to mobility,
and M has not recorded all the route entries announced by
Y ; 2) M did not receive the previous route updates sent byY
due to channel error; 3)Y has increased the lifetime of a route
entry, butM is unaware of this change and has deleted it from
its cache. We rely on the collaborative consensus mechanism
(Section IV-B.3) to enhance the monitoring performance.

2) Monitor Packet Forwarding Behavior:Each SCAN node
also monitors the packet forwarding activity of its neighbors.
This is achieved by overhearing the channel and comparing
ongoing data transmission with previously recorded routing
messages. We currently focus on three kinds of forwarding
misbehavior, namely packet drop, packet duplication, and
network-layer packet jamming, and develop simple algorithms
to detect each of them. Packet drop means that a node drops

the packets that it is supposed to forward for its neighbors;
packet duplication means that a node duplicates the packets
that it has already forwarded; and packet jamming means that a
node sends too many packets and occupies a significant portion
of the channel bandwidth.

The packet drop detection algorithm is similar to thewatch-
dog technique in [1]. However,watchdogwas originally pro-
posed to work with DSR [10], in which the sender explicitly
lists the route in the data packet header. It cannot be directly
applied in the AODV context, because when a node receives
a packet, its neighbors do not know to which node it should
forward the packet, thus cannot tell whether it forwards the
packet in the correct manner. Fortunately, our modification to
the AODV protocol, described in the previous section, enables
the detection of packet drop, because each node keeps track of
the route entries announced by its neighbors, which explicitly
lists thenexthop field.

Specifically, each SCAN node records the headers of the
recent packets it has overheard. When it overhears one packet
sent to a neighbor, sayX, it checks the cache of the route
entries announced byX, and determines the next hop node to
which X should forward the packet. If it has not overheard
the packet being forwarded byX to the correct next hop node
after certain time, it considers this packet as being dropped.
If the bandwidth corresponding to the packets dropped byX
exceeds a thresholdDrop Bandwidth, it considers this as
misbehavior in the packet forwarding service.

The detection of packet duplication or jamming follows the
similar structure. If one node overhears that the bandwidth
consumed by duplicate packets from its neighbor exceeds the
thresholdDuplicate Bandwidth, or the bandwidth consumed
by packets originated from its neighbor exceeds the threshold
Sending Bandwidth, it also considers these events as packet
forwarding misbehavior.

The localized monitoring mechanism performed by individ-
ual node is intrinsically inaccurate due to the inaccuracy in the
information obtained from channel overhearing. The detection
accuracy is sensitive to multiple factors, such as channel error,
mobility, parameters in the detection algorithm, etc. It is also
susceptible toblackmail attacks, in which an attacker black-
mails its legitimate neighbors as misbehaving nodes. Next we
describe a distributed collaborative consensus mechanism that
exploits the collaboration among local neighboring nodes to
improve the monitoring performance.

3) Distributed Collaborative Consensus:In the collabora-
tive consensus mechanism, local neighboring nodes collabo-
rate with each other tocross-validatethe monitoring results at
different nodes and reach a consensus. We use ”m out of N ”
strategy as the consensus criteria. That is, a node is considered
as an attacker if and only ifm nodes out of all itsN neighbors
have independently detected its misbehavior.

The ”m out of N ” strategy can significant improve the
monitoring performance, which can be quantitatively evaluated
by two metrics: detection probability (correct detection of an
attacker) and false alarm probability (false accusation against a
legitimate node). LetP1 andP2 denote the detection and false
alarm probability of individual monitoring results, respectively.



7

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Collaborative Consensus Parameter m (N=10)

De
tec

tio
n P

ro
ba

bil
ity

P1=0.98
P1=0.95
P1=0.9
P1=0.8
P1=0.7
P1=0.6

Fig. 4. Increasing detection probability by collaborative consensus.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Collaborative Consensus Parameter m (N=10)

Fa
lse

 A
lar

m 
Pr

ob
ab

ilit
y

P2=0.02
P2=0.05
P2=0.1
P2=0.2
P2=0.3
P2=0.4

Fig. 5. Decreasing false alarm probability by collaborative consensus.

With collaborative consensus, the detection probability is:

PD =
N∑

k=m

(
N

k

)
P k

1 (1− P1)N−k (2)

Meanwhile, the false alarm probability is:

PF =
N∑

k=m

(
N

k

)
(1− P2)k PN−k

2 (3)

The above two equations are visualized in Figures 4 and 5,
where we fixN as 10 and vary the choice ofm. We can see
that by choosing an appropriate value form, one can increase
detection probabilityPD and decrease false alarm probability
PF simultaneously. There are several approaches to selecting
m as a function ofN , such asN/2, a constant numberk (the
secret sharing parameter), or a value that guarantees bothPD

andPF are within certain range. The selection ofm represents
a tradeoff between the prompt reaction to the attackers and the
protection of legitimate nodes from false accusation. We will
study the impact of different schemes in future work.

The collaborative consensus mechanism is implemented in
a distributed manner. Each node broadcasts a SID (Single
Intrusion Detection) packet once it detects the misbehavior of
any neighbor. We do not differentiate the SID packets triggered
by routing and packet forwarding misbehavior. When a node
has receivedm independent SID packets against the same
node, it constructs a notification of token revocation, signs the
notification using its own share of SK, encapsulates the signed
notification in a GID(Group Intrusion Detection) packet, and
then broadcasts the GID packet. When a node has receivedk
GID packets, it constructs a TREV (Token Revocation) packet
signed by theSK, using the same polynomial secret sharing
primitive as we described in the token renewal process.

C. Token Revocation

Now we describe how SCAN revokes a malicious node’s
token in the network. Recall that each SCAN node keeps a
TRL (Token Revocation List). The token revocation process
is initiated when a constructed TREV packet is broadcasted.
When a node receives a TREV packet, it checks whether the
packet is signed bySK, and whether the revoked token is
already on the TRL. TREV packets that are not signed bySK
or contain tokens on the TRL are silently dropped. Otherwise,
it adds the revoked token into its own TRL and rebroadcasts
the TREV packet. This way, eventually every node will add the
revoked token into its TRL. Moreover, any active link from the
revoked token’s holder is deemed as broken and canceled out
by the path maintenance mechanism in the routing protocol.

Because only nodes with valid tokens can participate in the
network operations, the token revocation mechanism ensures
that a malicious node is isolated right after it was detected.
While the TREV packet is essentially flooded in the network,
the associated communication overhead is affordable because
there is only one TREV packet per attacker.

Each TRL entry is also associated with asoft-statetimer. In
order to ensure that a malicious node cannot renew its token,
a revoked token has to be kept in TRL until it expires, after
which it can be deleted. This soft state reduces both the storage
overhead and the processing overhead when a node checks the
validity of the tokens presented by its neighbors.

D. Summary

So far we have described the SCAN design in detail. SCAN
is self-organized in that all nodes in the network equally
participate in the security solution: each node shares a portion
of a global secret, monitors the behavior of its neighbors, and
renews the token for its neighbors. It does not assign any
special role to a single node, or assume that the nodes are
equipped witha priori trust relationship or secret association.
Instead, it exploits secret sharing techniques to enhance the tol-
erance to compromised nodes and withstand limited collusion
among the attackers. As a result, it always trusts a group of
nodes collectively without completely trusting any individual
node. The SCAN design is also fully localized as all its
basic operations are performed in the local neighborhood. In
essence, SCAN exploits extensive collaboration among local
neighboring nodes in protecting the network layer.

V. OVERHEAD ANALYSIS

In this section, we analyze thestorage, computation, and
communicationoverhead of SCAN, and provide a simple yet
meaningful overhead comparison between the reactive and the
proactive approaches.

A. Model and Notation

We consider a mobile ad hoc network in whichN nodes
are uniformly distributed in the field. The average number of
neighbors within a node’s wireless communication range isD.
The communication overhead to flood an area is proportional
to the number of nodes in it, with a constant ratio ofα. There



8

are q nodes in the network that are malicious, denoted by
M1,M2, · · · ,Mq. For simplicity, we do not consider node
arrival and departure in this analysis.

The network lifetime, i.e., the duration of time that the
network operates, isT . Each node is initially assigned a token
with lifetime T0 << T . When its current token expires, a node
renews the token with lifetime increased byT0 (see Section
IV-A.1). A malicious nodeMi starts to launch the attacks at
timeSi, and its neighbors reach a consensus to revoke its token
at time Ei > Si. The utilization of the network is measured
by the average number of route requests sent out during one
time unit, denoted byr.

B. Storage Overhead

The storage overhead of SCAN comes from two sources.
First, for token renewal and revocation purposes, each SCAN
node keeps the tokens of all itsD legitimate neighbors, and a
TRL that maintains the current revoked yet unexpired (at most
q) tokens. In order to perform the secret sharing cryptographic
primitives, each SCAN node also keeps the system public key
PK, and its own share of the system secret keySK.

Secondly, for monitoring purpose, each SCAN node keeps
the overheard routing entries advertised by its neighbors. The
number of entries isDN in the worst case. However, in the
context of on-demand routing protocols such as AODV, it is
quite reasonable to expect this number to be much smaller than
DN , sayO(N). In addition, each node records the recent data
packets that it has overheard. This cache has a constant size,
bounded by the production of the bandwidth and the time that
an old packet is kept. It can be further reduced by compressing
the packets using a hash function.

Therefore, the overall storage overhead of SCAN isO(DN)
in the worst case, andO(N) in a light- or medium-loaded
network with on-demand routing protocols.

C. Computation Overhead

Due to the vast variety of cryptographic algorithms and
their implementation, we measure the computation overhead
using a generic metric: the number of cryptographic primitive
executions, while neglecting the details (e.g., number of CPU
instructions) of each primitive. We also neglect the computa-
tional overhead of the monitoring mechanism, which requires
only table lookup and simple comparison.

The only cryptographic primitives in SCAN are the polyno-
mial secret sharing used in token manipulation, namely token
renewal and revocation. Each renewed token involvesD + 1
cryptographic computations at most (one computation at the
requesting node and one at each of itsD neighbors). Similarly,
each revoked token involvesD+1 cryptographic computations
at most. As we show in Section IV-A, each legitimate node
renews its token for

√
2T/T0 times. Each malicious node is

revoked of its token only once. Therefore, the total number
of cryptographic primitive executions in the entire network,
throughout the network lifetime, is:

CPOSCAN = (q + N

√
2T

T0
)(D + 1) (4)

In contrast, the proactive approach (e.g., [4]–[7]) seeks
to prevent the malicious attacks by applying cryptographic
primitives (e.g., digital signatures, or Message Authentication
Codes) on the routing messages. As a result, each time a node
receives a routing update, it has to perform two cryptographic
computation: one to verify the received update, the other
to generate its own update. As a conservative estimation,
we consider only the computation overhead associated with
processing route request packets, each of which is flooded in
the network. Thus, the total number of cryptographic primitive
executions in the proactive approach is at least:

CPOProactive = 2rTαN (5)

To compare SCAN with the proactive approach, we have:

CPOSCAN

CPOProactive
≈ D + 1

αr
√

2TT0

= O(
1√
T

) (6)

We can see that in an ad hoc network with long opera-
tional lifetime, SCAN hasasymptotically lowercomputation
overhead compared with the proactive approach that authenti-
cates each routing message. This is because SCAN performs
computation-intensive cryptographic computation only on to-
ken manipulation, which happens much less frequently than
routing message exchange.

For example, consider an ad hoc network that hasN = 100
nodes and operates for2 hours (i.e.,T = 120 minutes). Each
node initially has a token with lifetimeT0 = 10 minutes. On
average, each node hasD = 10 neighbors in its transmission
range, and initiates one data transmission every10 minutes.
Thus, r = N/10 = 10 (routing requests per minute). We
further assumeα = 1 for simplicity. Based on equation6,
we can see that CPOSCAN

CPOP roactive
≈ 0.02, which shows that the

computation overhead of SCAN is significantly lower than the
proactive approach in this network setup.

We note that this analysis uses the total number of cryp-
tographic primitive executions in measuring the computation
overhead. This simple metric may deviate from the actual
measurement in terms of CPU cycles, etc. Different primitives
may also have significantly varying computational characteris-
tics, which is determined by both the cryptographic algorithm
and its implementation. For example, a hash function typically
requires much less CPU cycles to compute than an asymmetric
cryptographic primitive such as RSA encryption. We leave an
extensive study on this aspect to future work.

D. Communication Overhead

The communication overhead of SCAN mainly comes from
token renewal, collaborative monitoring, and token revocation.
Similar to the previous analysis of computation overhead,
each renewed token involves one TREQ packet andD TREP
packets at most. The communication overhead of collaborative
monitoring depends on the detection timeEi−Si. During this
time period, the neighbors of the malicious nodeMi detect
its misbehavior individually, broadcast these detection results
in SID packets, then reach the consensus. If the detection
time is too long, the SID packets may be re-broadcasted.
Otherwise, for a malicious attacker, at mostD SID packets



9

andD GID packets are locally broadcasted. Finally, the TREV
packet is constructed and then flooded in the network. Suppose
the average size of the TREQ, TREP, SID, GID, and TREV
packets isC1, then the communication overhead of SCAN is:

CMOSCAN = (D + 1)N
√

2T

T0
C1 + q(2D + αN)C1 (7)

In the proactive approach, instead, the communication over-
head comes from the increased length of the routing messages,
which are appended with digital signature or Message Au-
thentication Code. The length of the appended digest differs
from one solution to another, and it may further change as the
routing message traverses different nodes in the network. We
neglect the details of these solutions, and denote the average
length of the appended digest asC2. Similar to the previous
computation overhead analysis, the communication overhead
of the proactive approach is at least:

CMOProactive = rTαNC2 (8)

The comparison between SCAN and the proactive approach
follows:

CMOSCAN

CMOProactive
≈ (D

√
2T/T0 + αq)C1

αrTC2
= O(

1√
T

) (9)

which shows that SCAN hasasymptotically lowercommunica-
tion overhead compared with the proactive approach in a long-
lived ad hoc network. This benefit originates from the fact that
SCAN avoids increasing the length of frequently transmitted
routing messages, and amortizes the communication overhead
of collaborative detection over a large time window of network
lifetime.

In summary, SAN has consistently lower computation and
communication overhead than the proactive approach when
the network continues to operate for a long period of time.
Nevertheless, we point out that this is achieved at the cost
of temporary disruption of network operations during the de-
tection phase. An extensive performance evaluation of SCAN
should take into account the detection speed and accuracy as
well; however, this is out of our focus in this analysis.

VI. SIMULATION EVALUATION

In this section we evaluate the performance of SCAN
through extensive simulations, the goal of which is to answer
the following questions:
• How well can SCAN detect and isolate a malicious node

in the network?
• How well can SCAN protect a legitimate node from being

incorrectly accused?
• How well can SCAN protect the network-layer packet

delivery functionality?
• How large is the overhead introduced by SCAN?
• Which factors may affect SCAN’s performance, and how?
We start with the simulation methodology and performance

metrics in Section VI-A, then evaluate the performance of
SCAN from the above aspects in Section VI-B to VI-D. The
results show that SCAN is effective in protecting the network
layer of ad hoc networks even in a highly mobile and hostile
environment.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Maximum node speed (m/s)

M
iss

 d
et

ec
tio

n 
pr

ob
ab

ilit
y

No malicious nodes
10% nodes as malicious
20% nodes as malicious
30% nodes as malicious
40% nodes as malicious

Fig. 6. Miss detection probability vs. Mobility

A. Methodology and Metrics

We have implemented SCAN in thens-2 simulator. Our
performance evaluations are based on the simulations of200
wireless nodes that form an ad hoc network over a rectangular
(3000m × 600m) flat space in1500 seconds of simulation
time. The physical layer at each networking interface is chosen
to approximate the Lucent WaveLAN wireless card. The MAC
layer protocol and the routing protocol are 802.11 DCF and
modified AODV protocol (Section IV-B), respectively. We use
an improved version of ”random waypoint” model [12], which
is recently proposed in [23], as the mobility model. We set the
minimum speed for each node as2 m/s except for the static
network case, and vary the maximum speed to evaluate the
impact of node mobility on SCAN performance. The pause
time is set to0 to simulate an ad hoc network in which nodes
are constantly roaming.

Before the simulation runs, we randomly select a certain
fraction, ranging from0 to 40%, of the network population
as malicious nodes. Each malicious node picks up a random
subset from the pool of possible attacks as its action strategy
in the simulations. The attack pool includes all misbehavior
that we have described in Section IV, for example, modifying
the hop cnt or seqnumberfields in the routing updates (rout-
ing misbehavior), dropping or duplicating the data packets,
blasting lots of packets (packet forwarding misbehavior). It
is possible that a malicious node may select a combination of
different misbehavior strategies. In the simulation run, multiple
random UDP CBR traffic is sent in the network, each starting
at a random time and lasting until the simulation terminates.
We have varied the number of CBR connections from 10 to
30 and the simulation results all follow the same trend. For
simplicity, we present only the results where 10 CBR traffic is
sent. The legitimate nodes participate in the routing and packet
forwarding activities in a normal manner, i.e., following all
protocol specifications. On the contrary, the malicious nodes
attempt to disrupt the network operations according to their
pre-selected strategy.

In the simulations we are interested in the following metrics:
1) miss detection ratio, which is the chance that SCAN fails
to convict and isolate a malicious node; 2)false accusation
ratio, which is the chance that SCAN incorrectly convicts and
isolates a legitimate node; 3)packet delivery ratio, which is
the percentage of packets that are successfully delivered to the



10

receiver nodes; 4)communication overhead, which is the total
number of packets sent by SCAN in order to achieve its goal.

Note that in a specific simulation run, due to the constraints
of the dynamic network topology, some malicious nodes may
not have the chance to realize their pre-selected attack strategy.
For example, a malicious node that plans to drop the data
packets can only do so when it resides in an active route. We
define “active” malicious nodes as those that have indeed mis-
behaved in the network operations, no matter how short the
mis-behaving time period is. For fairness purpose, we obtain
the miss detection ratio by considering only the set of active
malicious nodes, instead of all pre-chosen malicious nodes.
The false accusation ratio is obtained in a similar way over
the set of active legitimate nodes.

B. Monitoring and Detection

Now we evaluate the detection performance of the col-
laborative monitoring mechanism in SCAN in terms of miss
detection and false accusation ratios. Recall that the collabo-
rative consensus mechanism adopts a “m out of N ” strategy
(Section IV-B.3), in whichm is an important parameter that
can tradeoff between the miss detection ratio and the false
accusation ratio. In these simulations we fixm as 6 because
on average two neighboring nodes have about 10 common
neighbors, and study the impact of mobility and the number
of malicious nodes.

Figure 6 shows the miss detection ratio as the node mobility
speed changes. We can see that this ratio is the highest in a
static network, regardless of the number of malicious nodes.
The miss detection ratio drops considerably when nodes start
to move, and remains stable at4−8% when the speed further
increases. We discover from the simulation traces that SCAN
fails to convict a malicious node mainly because it resides in a
sparsely occupied region. In such cases, there are not enough
legitimate nodes in its neighborhood to reach a consensus.
This also explains why mobility helps to improve the detection
performance. In a static network, if a malicious node happens
to stay in a sparsely occupied region, its neighbors always
have no chance to convict it. On the contrary, in a mobile
network, the mobility increases the chance that other nodes
roam into this region or the malicious node itself moves into
another densely occupied region. As a result, the malicious
node has less chance to escape the monitoring mechanism as
there are more legitimate nodes in its neighborhood.

The impact of node mobility on the false accusation ratio is
presented in Figure 7, in which we can observe a trend in con-
trast to the previous one: the false accusation ratio continues to
increase as nodes move faster. When the maximum speed is20
m/s, the false accusation ratio is around5−10%. The reason is
that higher mobility makes nodes more “memoryless”. When
nodes are constantly moving at a high speed, a node can
overhear only partial information about previous transmissions
of its current neighbors. As a result, it is prone to mistakes
in cross-checking the incomplete information, and tends to
incorrectly accuse its legitimate neighbors. However, even if
a single node may have a relatively large chance to do so, the
collaborative consensus mechanism can significantly decrease

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Maximum node speed (m/s)

Fa
lse

 a
cc

us
at

io
n 

pr
ob

ab
ilit

y

No malicious nodes
10% nodes as malicious
20% nodes as malicious
30% nodes as malicious
40% nodes as malicious

Fig. 7. False accusation probability vs. Mobility

0 2 4 6 8 10 12 14 16 18 20
20

30

40

50

60

70

80

90

100

Maximum node speed (m/s)
Pa

ck
et

 d
el

ive
ry

 ra
tio

 (%
)

SCAN−protected
No protection

Fig. 8. Packet delivery ratio vs. Mobility

the false accusation ratio by cross-validating the monitoring
results from different nodes.

Figure 6 and Figure 7 also illustrate the impact of the
number of malicious nodes on the detection performance. We
can see that in both cases, even if the number of malicious
nodes increases dramatically from0 to 40% of the network
population, it does not exhibit evident impact on the detection
performance. One possible reason is that in our simulations,
each malicious node acts on its own, and there is no collusion
between them. More complicated simulations that take such
collusion into account may show different results.

C. Packet Delivery Ratio

The effectiveness of SCAN can be evaluated from the packet
delivery ratio perspective. Figure 8 shows the improvement on
the packet delivery raio in a SCAN-protected network. In these
simulations,30% of the nodes are set as malicious nodes.

We can see from the figure that SCAN increases the packet
delivery ratio by a factor up to150% even if 30% of nodes
are malicious. The reason is that after a malicious node starts
to launch the attacks, it is detected by its neighbors and its
current token is then revoked. Therefore, it can not participate
in the network and disrupt the network operations any more. In
an ad hoc network without any security protection, the packet
delivery ratio can be as low as30%, even if the network is
lighly loaded as in our simulations. On the contrary, the packet
delivery functionality is significantly improved in a SCAN-
protected network.

Another observation from Figure 8 is that even in a SCAN-
protected and light-loaded network, the packet delivery ratio is



11

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

Maximum node speed (m/s)

No
rm

al
ize

d 
ov

er
he

ad

No malicious nodes
10% nodes as malicious
20% nodes as malicious
30% nodes as malicious
40% nodes as malicious

Fig. 9. Communication overhead vs. Mobility

not 100%. One might suspect the major reason to be the non-
zero miss detection ratio, as a few malicious nodes may stay
in the network without being detected. However, our traces
show that this is not the case. In the simulations, most packet
loss is caused during the detection and reaction phases, i.e.,
after a malicious node has launched attacker yet before it is
finally isolated. During this time period, the packet delivery
functionality may be adversely affected.

D. Communication Overhead

Lastly we evaluate the communication overhead of SCAN
in terms of the total number of SID, GID, and TREV packets
sent in the network. Figure 9 shows the normalized overhead
under different conditions. We can see that the communication
overhead steadily increases as there are more malicious nodes
in the network, which is quite intuitive. Furthermore, the
communication overhead of SCAN also increases as node
mobility increases. This is because when nodes move faster,
there is larger chance that a legitimate node is incorrectly
suspected or even convicted by its neighbors, as we have
shown in Figure 7. As a result, more SID packets and TREV
packets are sent, which increases the communication overhead.

Because SCAN may generate three types of packets, namely
SID, GID, and TREV packets, we further show the distribution
of the communication overhead in Figure 10. From this figure
we notice that the dominant portion of the overhead comes
from flooding the network with TREV packets to revoke the
tokens of convicted malicious nodes. This also explains why
the overhead of SCAN steadily increases when there are more
malicious nodes in the network.

VII. D ISCUSSION

A. Design Rationale

In this section we revisit and elaborate on several design
choices in SCAN.

Asymmetric Cryptography Primitive The asymmetric
cryptography primitive (RSA) used in SCAN has relatively
high computation overhead, compared to the symmetric ones.
We justify this design choice by four reasons. First, we pursue
a self-organized security design that does not assume anya
priori secret association between nodes, or the existence of
any centralized trusted entity. As a result, one fundamental

SID(22%)

GID(19%)

TREV(59%)

Fig. 10. The distribution of the communication overhead

component in symmetric cryptography based schemes, namely
key management, is hard to enforce. Secondly, only tokens
and TREV packets are signed in SCAN. We indeed avoid the
overhead of performing any cryptographic computation on per
routing message basis. Thirdly, the credit strategy in deciding
token lifetime further decreases the token renewal overhead
over time. Lastly, we believe that with continuous development
of hardwares, mobile (even low-end) devices will have more
and more computation power in the future.

Localized Intrusion Detection The collaborative mon-
itoring mechanism in SCAN is localized in that each node
monitors its neighbors for any misbehavior. This is motivated
by the absence of any traffic concentration point in the ad hoc
networks. An alternative approach is the end-end-end scheme,
in which the sender detects the quality of the route based
on the feedback from the receiver. However, the end-to-end
approach can only determine whether there is any attacker
in the route, instead of which node is the attacker. It also
incurs extra communication overhead when the transport layer
protocols, such as UDP, and the application layer protocols do
not provide any feedback from the receiver to the sender.

Global Intrusion Reaction Our intrusion reaction mech-
anism guarantees that the attacker is isolated in the network
once it is detected by its neighbors. This can be viewed as a
global reaction scheme. An alternative approach is the end-
to-end reaction scheme, in which a sender tries its best to
avoid the attackers that it is aware of. The end-to-end approach
is often combined with the end-to-end detection schemes.
However, we abandon this approach due to several reasons.
First, while it works well with source routing protocols,
it is difficult to be extended to work with distance vector
routing protocols: once the sender pumps the packets into the
network, it cannot control the route along which the packets
are forwarded. Secondly, isolation of convicted attackers is
also desirable to the network, because the attackers cannot
resume the attacks and waste network resource in the future.

B. Related Issues

In this section we comment on several related issues and
discuss future work.

Accommodating Other Routing Protocols The monitor-
ing mechanism in SCAN can be easily extended to accommo-
date other on-demand or even proactive routing protocols than



12

AODV. The only requirement is that the routing algorithm is
distributed and deterministic, so that each node can examine
the routing updates advertised by its neighbors, based on the
same input to the routing algorithm. SCAN naturally works
with source routing protocols such as DSR [10]. Because the
entire route is listed in routing updates, a node can directly
compare a new update with the previous routes announced by
the next hop node therein. DSDV [24] has the same limitation
as AODV in that the routing message does not provide the next
hop information. Similarly, the addition of a newnexthopfield
in the routing message can address this issue and facilitate the
monitoring mechanism.

Colluding Attackers We assume that the collusion among
the attackers is limited, i.e., any group of colluding attackers
has less thank attackers. More powerful collusion among the
attackers will break SCAN as it violates the assumption of
the polynomial secret sharing scheme. We will exploit several
strategies, for example, re-keying of the SK, multiple SKs for
different neighborhoods, to accommodate more general attack
model in the future work.

Sybil Attack One potential vulnerability of ad hoc net-
works is the Sybil attacks [25], in which an adversary may
present and abuse multiple entities. As argued in [25], a
logically centralized entity that certifies identities is the key
factor to thwart Sybil attacks in a distributed system. SCAN
does not require any centralized entity physically existed in the
network. However, the local neighbors of a newly joined node,
which then bootstraps the new node, can jointly serve for the
purpose of certifying its identity, since these local nodes can
gain some knowledge through physical contact or location-
dependent side channels [26].

Node Density SCAN relies on the collaboration among
local neighboring nodes in both token renewal and monitoring
mechanisms. The effectiveness of SCAN in a sparse network
may be significantly affected by the density distribution over
the network. However, mobility can help to alleviate this prob-
lem as the legitimate nodes roam in the network and collect
partial tokens from other nodes met in different neighborhood.

Energy Efficiency SCAN requires that each node turns
on its wireless interface and overhears the channel all the time.
This may cause significant energy consumption in practice.
One possible extension is to make each node periodically wake
up and undertake the monitoring responsibility, which trades-
off between full strength monitoring and energy efficiency.
However, we admit that a more careful study is needed and
we leave it for the future research.

VIII. R ELATED WORK

The secure ad hoc routing problem has attracted substantial
attention in recent years. Hu et al. [4] proposed the Ariadne
protocol, which uses TESLA [18] one-way key chains and
source-destination pairwise keys to protect the DSR routing
protocol. The same authors [5] also proposed the SEAD
protocol to secure the DSDV routing protocol based on one-
way hash chains. The SRP protocol proposed by Papadimi-
tratos and Haas [6] relied on the secret association between
source and destination to protect the source routing messages.

Sanzgiri et al. [7] presented the ARAN protocol which exploits
asymmetric cryptography to authenticate the routing messages
based on each node’s public-key certificate, distributed by
a central trusted server. The SAODV protocol proposed by
Zapata and Asokan [8] uses both one-way hash chains and
data signatures to secure the AODV routing protocol.

All these protocols take the proactive approach and prevent
malicious attacks by protecting the routing messages through
cryptographic primitives. They either assume some kind ofa
priori secret association or key exchange between the nodes,
or assume the existence of a centralized trusted server in the
network. On the contrary, SCAN takes the reactive approach
by detecting and reacting to malicious attacks. SCAN protects
the mobile ad hoc networks through self-organized, fully
distributed, and localized mechanisms, in which no secret
associations exist between a pair of nodes, and no single node
is superior to the others. SCAN also differs from these secure
routing protocols in that it addresses the protection of routing
and packet forwarding in a unified framework.

There have been several papers focused on providing self-
organized security support in ad hoc networks. Hubaux et al.
[2], [9] proposed a self-organized public-key infrastructure for
ad hoc networks, the idea of which was similar to PGP [27].
In this infrastructure, the certificate of each node is issued
by other nodes, and the certificate chain is used to verify a
given certificate. However, as inherited from the PGP trust
model, this design is intolerant of compromised nodes which,
unfortunately, are an unavoidable security threat in mobile ad
hoc networks. Perhaps the most relevant work to SCAN is
the localized certification service proposed by Kong et al. [3].
The token renewal process in SCAN is similar to this scheme.
However, SCAN provides a complete network-layer security
solution that encompasses all three components of protection,
detection, and reaction.

Zhang and Lee [28] were among the first to study the
problem of intrusion detection in wireless ad hoc networks.
Marti and others [1] proposedwatchdog that monitors a
node based on overhearing the channel. The collaborative
monitoring mechanism in SCAN differs fromWatchdogin two
aspects. First, whileWatchdogfocuses on packet forwarding
misbehavior, SCAN aims at monitoring both routing and
packet forwarding activities of each node. Secondly, SCAN
exploits local collaboration to address the inherent imperfect-
ness of the information gathered by channel overhearing. The
monitoring result at each individual node does not take effect
until its neighbors has reached a consensus. The detection
performance is thus significantly improved.

IX. CONCLUSION

One fundamental challenge for security design in mobile ad
hoc networks is the absence of any pre-existing infrastructure
support. This work explores a novel self-organized approach to
securing such networks. To this end, we have presented SCAN,
a network-layer security solution that protects routing and
forwarding operations in a unified framework. SCAN exploits
localized collaboration to detect and react to security threats.
All nodes in a local neighborhood collaboratively monitor



13

each other and sustain each other, and no single node is
superior to the others. The proposed design is self-organized,
distributed, and fully localized. Both analysis and simulations
results have confirmed the effectivenss and efficiency of SCAN
in protecting the network layer in mobile ad hoc networks.

REFERENCES

[1] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbe-
havior in Mobile Ad Hoc Networks,” inProc. ACM MOBICOM, 2000.

[2] J. Hubaux, L. Buttyan, and S. Capkun, “The Quest for Security in Mobile
Ad Hoc Networks,” inProc. ACM MobiHoc, 2001.

[3] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing Robust and
Ubiquitous Security Support for MANET,” inProc. IEEE ICNP, 2001.

[4] Y. Hu, A. Perrig, and D. Johnson, “Ariadne: A Secure On-Demand
Routing Protocol for Ad Hoc Networks,” inProc. ACM MobiCom, 2002.

[5] Y. Hu, D. Johnson, and A. Perrig, “SEAD: Secure Efficient Distance
Vector Routing for Mobile Wireless Ad Hoc Networks,” inProc. IEEE
WMCSA, 2002.

[6] P. Papadimitratos and Z. Haas, “Secure Routing for Mobile Ad Hoc
Networks,” in Proc. CNDS, 2002.

[7] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Royer, “A Secure
Protocol for Ad Hoc Networks,” inProc. IEEE ICNP, 2002.

[8] M. Zapata and N. Asokan, “Securing Ad Hoc Routing Protocols,” in
Proc. ACM WiSe, 2002.

[9] S. Capkun, L. Buttyan, and J. Hubaux, “Self-Organized Public-Key
Management for Mobile Ad Hoc Networks,”IEEE Transactions on
Mobile Computing, vol. 2, no. 1, January 2003.

[10] D. Johnson, D. Maltz, and J. Jetcheva,DSR: The Dynamic Source
Routing Protocol for Multi-Hop Wireless Ad Hoc Network, Ad Hoc
Networking, Chapter 5,. Addison-Wesley, 2001.

[11] C. Perkins and E. Royer, “Ad Hoc On-demand Distance Vector Routing,”
in Proc. IEEE WMCSA.

[12] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva, “A Performance
Comparison of Multi-Hop Wireless Ad Hoc Network Routing Proto-
cols,” in Proc. ACM MOBICOM, 1998.

[13] C. Perkins, E. Royer, and S. Das, “Ad Hoc On Demand Distance Vector
(AODV) Routin,” Internet Draft, draft-ietf-manet-aodv-10.txt, 2002.

[14] S. Das, C. Perkins, and E. Royer., “Performance Comparison of Two
On-demand Routing Protocols for Ad Hoc Networks,” inProc. IEEE
Infocom, 2003.

[15] IEEE Standard, “Wireless LAN Media Access Control (MAC) and
Physical Layer (PHY) Specifications,” 1999.

[16] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-
level Measurements from an 802.11b Mesh Network,” inProc. ACM
SIGCOMM, 2004.

[17] Y. Hu, A. Perrig, and D. Johnson, “Packet Leashes: A Defense against
Wormhole Attacks in Wireless Ad Hoc Networks,” inProc. IEEE
Infocom, 2003.

[18] A. Perrig, R. Canetti, D. Song, and J. Tygar, “Efficient and Secure Source
Authentication for Multicast,” inProc. NDSS, 2001.

[19] N. Salem, L. Buttyan, J. Hubaux, and M. Jakobsson, “A Charging
and Rewarding Scheme for Packet Forwarding in Multi-hop Cellular
Networks,” in Proc. ACM MobiHoc, 2003.

[20] L. Buttyan and J. Hubaux, “Stimulating Cooperation in Self-Organizing
Mobile Ad Hoc Networks,”ACM/Kluwer Mobile Networks and Appli-
cations, vol. 8, no. 5, October 2003.

[21] S. Eidenbenz and L. Anderegg, “Ad hoc-VCG: A Truthful and Cost-
Efficient Routing Protocol for Mobile Ad Hoc Networks with Selfish
Agents,” in Proc. ACM Mobicom, 2003.

[22] P. Kyasanur and N. Vaidya, “Detection and Handling of MAC Layer
Misbehavior in Wireless Networks,” inProc. IEEE DSN, 2003.

[23] J. Yoon, M. Liu, and B. Noble, “Random Waypoint Considered Harm-
ful,” in Proc. IEEE Infocom.

[24] C. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers,” inProc. ACM
SIGCOMM, 1994.

[25] J. Douceur, “The Sybil Attack,” inProc. IPTPS, 2002.
[26] S. Capkun, J. Hubaux, and L. Buttyan, “Mobility Helps Security in Ad

Hoc Networks,” inProc. ACM MobiHoc, 2003.
[27] P. Zimmermann,The official PGP User’s Guide. MIT Press, 1995.
[28] Y. Zhang and W. Lee, “Intrusion Detection in Wireless Ad Hoc Net-

works,” in Proc. ACM MOBICOM, 2000.

Hao Yang is currently a Ph.D candidate in the Com-
puter Science Department, University of California,
Los Angles (UCLA). He received his B.S. degree
from the University of Science and Technology of
China in 1998, and his M.S. degree from the Chinese
Academy of Sciences in 2001. His research interests
include network security, wireless networking, and
distributed systems.

James Shuis currently a system/software engineer
at Northrop Grumman Corporation. He received the
B.Sc. degree in 2001 and the M.Sc. degree in 2003
with specialization in wireless networking from the
University of California, Los Angles (UCLA). Pre-
viously, he worked at Platinum Technology Inc. as
a software programmer developing network security
applications. His research interests include wireless
security/infrastructure, network protocol, routing al-
gorithm and quality of service.

Xiaoqiao Meng is currently a Ph.D. candidate in the
University of California, Los Angeles (UCLA). He
received his B.S. degree in control theory from the
University of Science and Technology of China in
1998, and his M.S. degree in Pattern Recognition
and Intelligent Control from the Institute of Au-
tomation, Chinese Academy of Sciences, P.R.China.
His research interests include wireless networking,
sensor networks and performance evaluation.

Songwu Lu is an associate professor in the Com-
puter Science Department at UCLA. He received
both his M.S. and Ph.D. degrees from the Uni-
versity of Illinois at Urbana-Champaign (UIUC).
He received an NSF CAREER award in 2001. His
research interests include wireless networking, mo-
bile systems, sensor networks, and wireless network
security.


