
SmartSiren: Virus Detection and Alert for Smartphones

Jerry Cheng1, Starsky H.Y. Wong1, Hao Yang2 and Songwu Lu1

Dept. of Computer Science, UCLA, 4732 Boelter Hall, Los Angeles, CA 90025 1

IBM T.J. Watson Research, 19 Skyline Drive, Hawthorne, NY 10532 2

{chengje,hywong1,slu}@cs.ucla.edu1, haoyang@us.ibm.com2

ABSTRACT
Smartphones have recently become increasingly popular be-
cause they provide “all-in-one” convenience by integrating
traditional mobile phones with handheld computing devices.
However, the flexibility of running third-party softwares also
leaves the smartphones open to malicious viruses. In fact,
hundreds of smartphone viruses have emerged in the past
two years, which can quickly spread through various means
such as SMS/MMS, Bluetooth and traditional IP-based ap-
plications. Our own implementations of two proof-of-concept
viruses on Windows Mobile have confirmed the vulnerability
of this popular smartphone platform.

In this paper, we present SmartSiren, a collaborative virus
detection and alert system for smartphones. In order to de-
tect viruses, SmartSiren collects the communication activity
information from the smartphones, and performs joint anal-
ysis to detect both single-device and system-wide abnormal
behaviors. We use a proxy-based architecture to offload the
processing burden from resource-constrained smartphones
and simplify the collaboration among smartphones. When
a potential virus is detected, the proxy quarantines the out-
break by sending targeted alerts to those immediately threat-
ened smartphones. We have demonstrated the feasibility
of SmartSiren through implementations on a Dopod 577w
smartphone, and evaluated its effectiveness using simula-
tions driven by 3-week SMS traces from a national cellular
carrier. Our results show that SmartSiren can effectively
prevent wide-area virus outbreaks with affordable overhead.

Categories and Subject Descriptors
C.2.0 [Information Systems Applications]: General—
Security and Protection

General Terms
Design, Security

Keywords
Security, Smartphone, Virus Detection, Alert, Privacy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’07,June 11–14, 2007, San Juan, Puerto Rico, USA.
Copyright 2007 ACM 978-1-59593-614-1/07/0006 ...$5.00.

1. INTRODUCTION
Smartphones are a new type of communication device that

combines the functionality of a traditional mobile phone (i.e.
voice and messaging) with that of a handheld computing de-
vice such as PDA. Unlike traditional mobile phones, smart-
phones are data-centric and capable of running third-party
software applications. The convenience of an “all-in-one”
device makes the smartphone very attractive to a wide range
of users. Since its introduction a few years ago, smartphones
have taken up 5% of the mobile phone market share within
the United States [17] and analysts have estimated a con-
tinuous strong growth rate as high as 156% per year [22].

Unfortunately, smartphone’s increasing popularity and its
capability to run third-party software have also attracted the
attention of virus writers. The first proof-of-concept smart-
phone virus Cabir [21], which spreads through the Bluetooth
interface, was introduced in 2004 by the virus writing group
29A [1]. Subsequently a large number of smartphone viruses
have followed and attempted to exploit the unique vulnera-
bilities of smartphones. A few instances of smartphone virus
outbreaks have been reported, e.g., one at the World Athlet-
ics Championships by Cabir [18] and another internally at
a company by CommWarrior [12]. Despite their relatively
small scales, these incidents foreshadow more severe threats
to come as smartphones become more widely adopted.

Currently, the best defense against smartphone viruses
mirrors the strategy against computer viruses with the in-
ception of smartphone anti-virus software. While anti-virus
is expected to be effective in addressing smartphone viruses,
it also has several limitations. First, a smartphone typically
has only limited processing power, storage capacity and bat-
tery power, which can hamper the effectiveness of an on-
device anti-virus software [15]. Secondly, it is challenging
to distribute virus signatures files to the smartphones in a
timely manner, because a smartphone may not be always
connected to the Internet or may induce additional costs
for the Internet connection, e.g., through GPRS/EDGE.
When combined, these issues result in a fertile ground for
widespread infection of smartphone viruses, which can crip-
ple the mobile phone users as well as the cellular and tele-
phony infrastructure.

In this work, we propose SmartSiren, a collaborative virus
detection and alert system for smartphones. SmartSiren tar-
gets a practical scenario where some smartphones are not
equipped with anti-virus software or have not received the
latest virus signatures. The goal of SmartSiren is to halt
the potential virus outbreak by minimizing the number of
smartphones that will be infected by a new released virus.

As such, SmartSiren is orthogonal to and complements the
existing anti-virus solutions for smartphones.

In our system, each smartphone runs a light-weight agent,
while a centralized proxy is used to assist the virus detection
and alert processes. The benefit of such a proxy-based ap-
proach is to offload most of the processing burden from the
resource-constrained smartphones, and to simplify the col-
laboration among the smartphones. Specifically, each smart-
phone agent keeps track of the communication activities on
the device, and periodically reports a summary of these ac-
tivities to the proxy. In cases where abnormal activities have
been locally identified, a smartphone may also submit a re-
port immediately to the proxy. On the other hand, the proxy
performs joint analysis on the received reports and detects
any single-device or system-wide viral behaviors. When a
potential virus is detected, the proxy sends targeted alerts
to both infected devices and a subset of the uninfected de-
vices, which may be in direct contact with an infected device,
based on the users’ contact lists and mobility profiles.

One salient feature of SmartSiren is the protection of user
privacy. In practice, most users are not willing to reveal
the activities on their phones to the proxy. SmartSiren ad-
dresses such privacy concerns by an anonymous and ticketed
report submission scheme. On the one hand, it prevents the
proxy from knowing the activities of any user. On the other
hand, it also prevents a virus or an attacker from abusing
the privacy mechanism and injecting bogus reports in large
amounts to mislead the virus detection results.

We have implemented a prototype of SmartSiren on a Do-
pod 577w smartphone [5] that runs the Windows Mobile op-
erating system, an increasingly popular platform for smart-
phones. We also implemented two proof-of-concept viruses
on Windows Mobile that demonstrated its vulnerabilities.
The effectiveness of SmartSiren is evaluated using simula-
tions that are driven by 3-week SMS traces obtained from
a national cellular carrier in India. Our results have shown
that SmartSiren can confine the outbreak of smartphone
viruses with affordable overhead.

In summary, our contributions are three-fold. First, we
demonstrate the vulnerability of Window Mobile smartphones
through the implementation of proof-of-concept viruses. Sec-
ond, we design and implement SmartSiren that can pre-
vent virus outbreak via collaborative detection and targeted
alerts. Lastly, we propose a ticketing scheme that can pre-
serve the user privacy yet still enforce accountable reports.

The rest of the paper is organized as follows. Section 2 de-
scribes the existing smartphone viruses and reports our own
virus implementation efforts. Section 3 discusses the chal-
lenges in combating smartphone viruses. Section 4 presents
the design of SmartSiren framework, and section 5 describes
the design enhancement of protecting user privacy. Section
6 summarizes our prototype implementation on the smart-
phone, and Section 7 evaluates the effectiveness of our design
through trace-driven simulations. Section 8 compares to the
related work, and Section 9 discusses several remaining de-
sign issues. Finally, Section 10 concludes the paper.

2. SMARTPHONE VIRUSES
In this section, we first describe and categorize the existing

smartphone viruses, then provide insights into the vulner-
ability of Windows Mobile by implementing two proof-of-
concept viruses on this popular smartphone platform.

2.1 Existing Smartphone Viruses
The first smartphone virus, Cabir, was released in 2004

by the virus writing group 29A [1] as a proof of concept:
it can self-replicate but does no harm to the phones. Since
then, more than a hundred smartphone viruses have come
into existence, many of which contain malicious codes and
cause various damages to the smartphones. The evolution
of smartphone viruses is at a very fast pace, perhaps due to
the experience virus writers have gained from the computer
and Internet world. As estimated by [13], two years were
sufficient for smartphone viruses to evolve to an equivalent
of twenty years of work in computer viruses.

Several incidents of smartphone virus propagation have
recently been reported [18, 12]. So far the outbreaks have
been limited in scale due to the the lack of victims. Smart-
phone is still in its infancy and only accounts for about 5% of
the entire mobile phones in use in the United States. How-
ever, smartphone’s market share is expected to increase sig-
nificantly over the next few years with projection as high as
156% annual growth rate, as compared to 10% for average
mobile phones [22]. Such explosive growth of smartphones
will provide a fertile ground for the viruses to spread.

An infected smartphone can inflict severe damages to both
the users and the cellular service provider. To the users, the
damage may include the loss or theft of private data, the
disruption of normal phone usage and also monetary losses
(e.g., the virus may secretly use the SMS/MMS services).
On the cellular infrastructure side, the smartphone viruses
present a serious threat of Denial of Service, e.g., one that
can block the emergency 911 calls [16].

2.2 Virus Categorization
It is important to examine and categorize the various

smartphone viruses in existence today, because such an un-
derstanding would enable us to decide what type of virus
is most crucial for our solution to target. There are many
ways to categorize smartphone viruses. For example, in [28],
these smartphone viruses are categorized based on the tar-
gets that the virus attacks (e.g. the call center, the cellular
base station), while in [26], the viruses are categorized based
on the goal it tries to achieve (e.g. information theft, DoS).

We take on a different categorization approach. Instead
of focusing on what the viruses seek to attack or achieve, we
choose to categorize the smartphone viruses based on the
multiple infection vectors that the virus enters and/or exits
the device. The benefit of our approach is that it provides
a generic view on how a virus penetrates into a smartphone
and how easily it can spread in the smartphone population.

We have identified five categories of infection vectors for
smartphone virus, which are listed in Table 1 in a decreasing
order of their expected spreading capability. Table 1 also
gives some representative viruses currently in existence for
each infection vector. Below, we will describe these infection
vectors in more detail.

Cellular Network: Smartphone viruses can use Multi-
media Messaging System (MMS) to spread within the tra-
ditionally virus-free cellular network. The most well-known
virus of such a kind is CommWarrior [21]. By the virtues
of its core telephony functionalities, every smartphone is al-
most always on and always connected to the cellular net-
work, making this infection vector extremely contagious.

Bluetooth: Bluetooth virus is innovative in that its spread-
ing does not rely on the existence of any network infras-

Infection Vector Examples

Cellular Network CommWarriors, Mabir
Bluetooth Cabirs, CommWarrior

Internet over Skulls, Doomboot
WiFi/GPRS/EDGE

USB/ActiveSync/Docking Crossover, Mobler
Peripherals Cardtrap

Table 1: Smartphone viruses categorization based
on infection vector.

tructure. Instead, it leverages the mobility of the mobile
users and the short range wireless connectivity to directly
infect nearby Bluetooth users. It is especially contagious in
a dense environment, as demonstrated the incidents of Cabir
outbreak in the World Athletics Championships [18].

Internet: Most smartphones are capable of accessing the
Internet (via WiFi, GPRS/EDGE or 3G network access),
and run the risk of contracting viruses through file down-
loading from the Internet much like the desktop computers.
However, a few distinctions from the desktop computer set
this infection vector less potent than the above. First, the
screen size and the large keyboard will help the computer
remain as the primary web surfing device of choice in an of-
fice or home environment. Secondly, the limited bandwidth
for Internet access over cellular networks and the cost of
GPRS/EDGE/3G access are barriers to the use smartphone
users in an outdoor environment. However, a smartphone
user can still be lured into downloading files such as Skulls
and Doomboot, disguised as games, and end up getting in-
fected by a smartphone virus.

USB/ActiveSync/Docking: Frequently, smartphones
are connected to a desktop computer in order to synchro-
nize calendar events and new contacts. A smartphone virus
could potentially penetrate the smartphone in the event of
a synchronization as demonstrated by the Crossover virus
[21]. However, to take this infection vector, the virus must
first compromise the desktop computer before an attempt
can be made onto the smartphone. This requirement makes
it significantly more difficult for the smartphone virus to
reach a large audience.

Peripherals: Similar to desktop computers where viruses
used to exploit the floppy disk to spread, smartphone viruses
also demonstrated that they are capable of going the same
route, as shown by Cardtrap. However, similar to the floppy
disk virus, this infection vector has limited spreading capa-
bility and most likely will fade out before a major outbreak.

In this work, we focus on the first two categories, i.e.,
those viruses that spread through cellular messaging systems
or Bluetooth. These two infection vectors are not only the
most popular ones among existing smartphone viruses, but
also the most dangerous ones, because they are unique to
smartphones and have strong spreading capability. Thus,
it is critical to have a security solution that can effectively
combat these viruses.

2.3 Implementing Viruses on Windows Mobile
Next we use real implementations to investigate, and pro-

vide insights on the difficulties for a novice to develop a
virus on Windows Mobile smartphones. Unfortunately, our
study shows that the increasingly popular Windows Mobile
platform is just as vulnerable, if not more than Symbian OS
smartphone.

2.3.1 Application Unlock
The first step in developing applications for a Windows

Mobile smartphone is to configure the device into the Ap-
plication Unlock mode, i.e., a privately developed software
program can be installed and run on the phone. Before
diving into the detail of Application Unlock, we will first
provide some insight regarding application locking.

Microsoft (Mobile2Market [9]), along with Symbian (Sym-
bian Signed [10], has taken the approach to implement secu-
rity policies into the smartphone in the form of application
certification. The goal of the application certification is to
disallow unknown applications from installing, executing, or
accessing certain privileged APIs on the smartphone. In the-
ory, such an approach can prevent viruses from infecting a
smartphone. Unfortunately, this approach, in practice, has
several associated drawbacks. First, software bugs and vul-
nerability may still exist on the smartphone which allows
viruses to bypass the application certification. Secondly, it
faces the greatest deterrent of economic pressure. Getting
an application certified by the proper authorities is a time
consuming process and usually involves high fees. Thus,
it comes as no surprise that the open-source community is
strongly opposed to such certification requirements. The
consumers also feel frustrated because they cannot install
and run freewares that provide similar functionalities as the
commercial software. Finally, the age-old and very popular
practice of SIM unlocking the phone (i.e. to use a compet-
ing carrier’s SIM card on the phone) usually requires the
phone be first application unlocked. As a result of such
pressures from the public, either the cellular carrier (e.g.,
Orange [8]) gives up and allows the users to application un-
lock their phones, or the open-source community develops
its own methods to application unlock the phone.

We have found some online resources to application-unlock
the particular smartphone used in our implementation, Do-
pod 577w [5] . The procedure is relatively simple: We down-
loaded regeditSTG and SDA ApplicationUnlock, and follow
the well-documented user guides [11]. The whole Appli-
cation Unlock process takes no more than 10 minutes and
requires no knowledge about the inner details of a smart-
phone. For most smartphone models, numerous application
unlocking tools and user guides are available to the pub-
lic on the Internet. As a result, the bar for unlocking the
smartphone is set fairly low for general users.

2.3.2 Implementing Smartphone Viruses
The existing smartphone viruses mostly target the Sym-

bian OS, and only a few of them can infect other smart-
phones running Windows Mobile. This is not surprising
because Symbian has dominated the current smartphone
market. In summary, virus writers seek as many victims
as possible, while currently there are more Symbian-based
smartphones than Windows Mobile-based ones. However,
Windows Mobile has recently gained increasing popularity,
and very likely this trend will continue in the foreseeable
future. Looking into the future, we ask the following ques-
tions: How secure is Window Mobile , and how difficult is
it is even a novice to write viruses on it?

In what follows, we describe our implementation efforts
in writing viruses on Windows Mobile, which emulate some
existing viruses on Symbian. In particular, our newly cre-
ated virus mimics Cabir [21] and Flexispy [6]. In this sense,
one can think that we are ”exporting” these viruses from

Symbian to Windows Mobile. However, the actual imple-
mentation is not trivial because we do not have the source
codes of those of Symbian viruses, and because Windows
Mobile provides a very different set of capabilities and APIs
from those in Symbian. Our experience shows that, as long
as the device is application unlocked, it is not only feasible
but fairly easy to write viruses on Windows Mobile.

For a Cabir-like virus, it can be achieved using the APIs
associated with OBEX programming. The basic steps in-
volve first turning on the Bluetooth interface using the Bth-
SetMode() function call. Next, create and initialize an IObex
object that will handle all the actual communication be-
tween two Bluetooth enabled devices. Once the IObex ob-
ject is ready, it can be used to discover nearby devices using
the StartDeviceEnum() function call. The returned list of
devices includes each device name and Bluetooth MAC ad-
dress of a potential victim. A victim is selected from the
list and as the last step, the file for transmission, i.e. the
virus executable, is retrieved from its current directory and
sent using the IObex’s put() function. To behave similars to
Cabir, one would only need to include an additional for-loop
to enclose the code from device discovery to the sending of
the virus executable. The entire executable is under 8 KB
and the code is tested against a HP iPaq with Bluetooth
enabled. The test shows that the iPaq will receive the virus
executable and display a message asking the users whether
it should be saved. If the user respond with a Yes, the exe-
cutable is saved in the ”My Documents” folder. With some
social engineering (or worst software exploits) a user may
navigate to the folder and execute the received program.
From what we observed on the Smartphone, once the pro-
gram starts running after initial warning, there is no visual
indication that shows the user that program is running in the
background. Even navigating to the Task Manager, where
typical applications can be stopped, there is no display of
the Bluetooth virus program that we created.

The above virus implementation is just a proof of concept.
As we do not intend to create a smartphone virus with real
damages, we did not further enhance our codes. Currently,
when the phone is rebooted, our Bluetooth virus will cease
to take effect. However, it would be fairly easy to take ad-
ditional steps and package our executables into a cab file,
which is essentially an installer for smartphone programs.
Running the cab file will allow us to place several compo-
nents into the smartphone so that the virus program will
automatically restart when the smartphone is rebooted.

For the messaging virus, we have tried to emulate exist-
ing Symbian-based viruses that exploit the SMS capabili-
ties to target a specific destination for financial gain (e.g.
Redbrowser) or steal private data (e.g. Flexispy). Such a
messaging virus can be implemented in two steps: a) gath-
ering information on the local device, then b) creating and
sending out SMS messages. There is much valuable infor-
mation on a smartphone that the virus may collect. For
example, the ability to query the pocket outlook allows a
virus to retrieve private information, such as the itinerary
of the user from the user’s ”calendar”, the to-do list from
the ”task” and most importantly, the information of each
contact on the user’s ”contact list”. While a typical mobile
phone can only store the phone number of the contacts, a
smartphone contact list typically contains much more infor-
mation including, but not limited to, the contact’s birthday,
email address, home/work address, Company, Job title, etc.

The Internet

Cellular Network Proxy

Smartphone

Internet connectionBluetooth communication range
Contact list relationship

Cell 1

Cell 2

Cell Tower

Figure 1: The architecture of SmartSiren

Moreover, outside the pocket outlook, the users may store
important PIN numbers or passwords for ATMs and finan-
cial accounts in text files. After gathering such valuable
information, it is easy to compose an SMS message using
the SmsOpen() and SmsSendMessage() API.

3. CHALLENGES
Traditionally, the malwares on the Internet are handled by

network-side defense, in the form of firewall and intrusion de-
tection, and endhost-side defense using anti-virus software.
The network-side defense in the smartphone context faces
new challenges because viruses can spread without the re-
liance on the network infrastructure, e.g., through Bluetooth
interfaces. While anti-virus software will continue to play
a central role in defending against smartphone viruses, it
has several limitations. In particular, the majority of exist-
ing anti-virus software rely on an up-to-date virus signature
database to detect malwares. If the virus signatures is out-
dated, its effectiveness diminishes. This can happen when
a new malware emerges and the anti-virus researchers have
not yet identified its signature. Moreover, a smartphone
may not have 24×7 Internet connectivity. As a result, even
when the virus signature is available, the smartphone may
not be able to obtain it in a timely fashion.

In general, there are several key differences between smart-
phones and computers that impact the anti-virus solutions.
First, while a computer is primarily connected to the Inter-
net via IP networks, a smartphone also connects to the cellu-
lar network through SMS/MMS services, as well as its Blue-
tooth interface that is frequently used to interact with other
devices (e.g. headset, GPS, or even other smartphones).
These interfaces are quickly becoming the new infection vec-
tor for viruses, which makes the smartphone susceptible to
get infected even when it is disconnected from the Inter-
net. Secondly, a smartphone is highly mobile and always
on, resulting in a greater degree of difficulty in quarantining
the virus in a local region. Lastly, a smartphone has lim-
ited processing power and storage capacity, which limits the
effectiveness of a complex and on-device anti-virus solution.

4. DESIGN
In this section, we present SmartSiren, a collaborative

virus detection and alert system for smartphones. Our ba-
sic idea is quite simple: The outbreak of viruses must affect
many smartphones and cause noticeable changes in their
behavior. Thus, we can achieve early detection of viruses
by keeping track of the device activities even in a coarse
granularity. However, this seemingly simple idea presents

many research challenges in terms of its feasibility, effective-
ness and efficiency. For example, what activity information
is available at the devices, and how is it affected by vari-
ous viruses? How can we differentiate the behavior changes
caused by viruses or inherent system dynamics? When a
potential virus outbreak is identified, which devices should
be alerted and how?

The rest of this section will address these questions in de-
tail. We overview the architecture of SmartSiren in Section
4.1, then describe its information collection and virus detec-
tion processes in Sections 4.2 and 4.3. Finally, we describe
the targeted alerting mechanism in Section 4.4.

4.1 Architecture and System Components
The architecture of SmartSiren is illustrated in Figure

1. The system consists of a large set of smartphones that
want to be protected from potential virus outbreak and a
proxy that interacts with the smartphones through either
cellular networks or IP-based Internet connections. Each
smartphone runs a light-weight agent that logs the device
activities, e.g., the usage of cellular SMS service and Blue-
tooth interface. These logs are periodically reported to the
proxy. Upon receiving such reports from the smartphones,
the proxy performs per-device viral behavior analysis as well
as aggregated system-wide viral behavior analysis, and iden-
tifies each smartphone as either healthy or infected. When
the viral activity has been verified, the proxy alerts the in-
fected smartphone users about the suspicious activities. In
addition, the proxy also alerts other smartphone users that
may immediately be vulnerable to infection attempts from
those already infected devices.

The motivation of such a proxy-based architecture is two-
fold. First, the smartphones may have only limited resources
in terms of computation, storage, battery power. By lever-
aging a powerful proxy, we can offload most of the processing
burden from the devices to the proxy, thus minimizing the
performance penalty on the smartphones. Secondly, for ac-
curate virus detection and prompt alerts, the smartphones
must collaborate with each other. The use of a centralized
proxy can greatly simplify such collaboration. For example,
the proxy can detect system-wide viral behavior by perform-
ing joint analysis on reports from different devices, which
cannot be easily done at each single device.

Of course, the centralized proxy also manifests itself as a
performance bottleneck and a single point of failure in the
system. To improve the scalability and resiliency, one can
extend the architecture with multiple proxies in a flat or
hierarchical structure. However, we leave such extensions
to future work, and focus on the single-proxy case in the
remainder of this paper.

4.1.1 Smartphone Agent
In SmartSiren, each smartphone runs a lightweight agent

that assumes minimal functionalities on the host device.
The reason is because the smartphones on the current mar-
ket have very diverse capability in terms of processing power,
storage capacity and communication interface. A lightweight
agent with minimum device requirements can allow most, if
not all, smartphones to use our system. In return, the more
smartphones participate in our system, the better the qual-
ity that the proxy can achieve in performing viral behavior
analysis. Specifically, our smartphone agent consists of the
following four modules:

Logging: This module logs assorted activities on the de-
vice. We focus on the viruses that spread through the use
of messaging or Bluetooth interface, thus the logging mod-
ule mainly records information that is related to commu-
nications over these two interfaces. In section 4.2, we will
present more details on exactly what information is logged
for messaging and Bluetooth respectively.
Privacy Protection: Simply reporting the phone activi-
ties to the proxy is unacceptable to many privacy-conscious
users. The privacy protection module addresses this concern
by allowing the device to report in an anonymous manner.
On the other hand, it also prevents a virus or an attacker
from abusing the privacy protection and injecting bogus re-
ports. The details will be presented in Section 5.
Reporting: This module decides when the device should
report its activities to the proxy. As we will show in Section
4.2, there are two types of reports: daily and pro-active. In
normal cases, a device sends one report every day to the
proxy; however, when abnormal behavior has locally been
observed, the device immediately sends a pro-active report
to the proxy.
Communication: This module handles the actual com-
munication with the proxy. In our design, we make a min-
imal assumption about a smartphone’s communication ca-
pability, as our primary communication methods are SMS
messaging and IP channels. SMS has been available to all
mobile phones since the 2G Cellular networks, and all smart-
phone nowadays are able to access the Internet through IP-
based connections. Despite that such capability is already
supported by the devices, different users may have differ-
ent network availability. For GPRS/EDGE subscribers, IP
communication can be achieved anytime, anywhere. How-
ever, non-subscribers may have to rely on WiFi access at
home or at work.

The IP-based communication is easy to implement. For
the SMS-based communication, we leverage the SMS gate-
way on cellular networks, which can convert a SMS mes-
sage to/from the mobile phone and an email from/to an
Internet mailbox. As such, the proxy only needs to send
or receive emails from the specified address. For exam-
ple, with T-Mobile, a mobile phone can send a SMS mes-
sage to an email address by setting the recipient number
as “500”. The first word of the SMS body is the des-
tination email address. Separated by a white space, the
rest of the SMS body is the email content. The payload
limit of a single SMS message can be up to 160 bytes. On
the other hand, when the proxy needs to contact a smart-
phone, it can send an email to the phone’s SMS address.
The email is addressed to <phonenumber>@tmomail.net,
which is received by T-Mobile’s email gateway and then
delivered to the mobile phone as SMS or MMS messages.
Other cellular carriers, such as Cingular, also have similar
mechanisms in place, though the setup (e.g., the domain
name) may be different. Even better, a generic method to
reach all mobile phones in US is currently available using
<phonenumber>@teleflip.com.

4.1.2 Proxy
The primary functionality of the proxy is to perform anal-

ysis on the data collected from the smartphones, and to de-
termine which smartphones should be alerted when a possi-
ble virus is detected. Specifically, the proxy consists of the
following four modules:

Category Value

Phone Number 555-123-4567
Email Address john.doe@domainname.com

Network T-Mobile
Phone Model Dopod 577w

Bluetooth Yes
OS type Windows Mobile

Contact List Info Jane: 555-321-7654
Bob: 555-213-6745

....
Mobility Profile Cell ID 1234

Cell ID 9971
Cell ID 756

Table 2: Static configuration information collected

from a smartphone during the registration.

Report Collection: This module interacts with the smart-
phone agents to collect information aggregated from each
smartphone. The primary means of communication includes
Cellular-Email and IP networks. Many cellular networks
can support a smartphone to compose SMS and deliver the
message to an email address [19]. If IP channel is available,
the smartphone can also submit its report over IP networks.
The proxy stores the received reports for further analysis.
Privacy Protection: This module works together with the
privacy protection module on each smartphone agent. The
details are in Section 5.
Data Analysis: This module performs joint analysis on the
aggregated smartphones’ reports, in order to detect whether
a virus is currently spreading in the smartphone population.
The specific analysis techniques will be presented in Section
4.3.
Alerting: Once a virus outbreak is identified, this module
attempts to alert the infected devices using SMS, so that
the respective user should take action to rectify the infected
devices. In addition, it also alerts those uninfected devices
that may be in direct contact with an infected device. Such
an alert will instruct the smartphone agent to filter the virus
infection attempts through SMS or change the Bluetooth
interface into non-discoverable mode.

4.2 Collecting Information
In our system, a smartphone registers its static configu-

ration with the proxy during the initial registration, while
continuing to report its dynamic activity to the proxy during
the operational phase. Below we describe the information
collection process in detail.

4.2.1 Registering Static Configuration
When a user joins our system, he/she needs to first reg-

ister with the proxy. Table 2 summarizes the list of infor-
mation that the user may provide during the registration.
The minimal information required is a valid mobile phone
number and the cellular carrier. The mobile phone number
will serve as the user identification, as well as the recipi-
ent address when the proxy needs to communicate with the
phone (e.g., sending alerts) using SMS. The other informa-
tion is optional but can help both the accurate detection for
the proxy and the targeted alerting service for the user. In
particular, the phone model helps the proxy to determine
the general capabilities of the smartphone. The Bluetooth
capability is indicated so that a Bluetooth-incapable device
will never receive alerts for Bluetooth viruses. The operat-

ing system running on the smartphone is another parameter
that decides the scope of the alerts.

During the registration, the user has the option to pro-
vide additional information about his/her contact list (i.e.,
the phone book) and mobility profile. The contact list
is valuable to the proxy in detecting viruses that spreads
through the messaging channels. Moreover, in cases where
the user’s smartphone is infected with a virus, the proxy can
issue alerts to the entries on its contact list. The mobility
profile is a list of locations that a user frequently visits. Here
the location is identified based on the cellular network’s cell
tower id. The proxy uses such mobility profiles to issue tar-
geted alerts to the users in a specific area when a Bluetooth
virus is discovered. Thus, registering the mobility profile
helps users to receive only targeted alerts for the relevant
locations instead of receiving a wide range of alerts.

Each registration must be authenticated by having the
mobile phone directly reply to the proxy’s authentication
request through a SMS message. This step ensures the exis-
tence of a valid SIM card and prevents the malicious attacker
from registering a large number of fake identities in order to
submit fabricated reports to confuse the proxy.

4.2.2 Reporting Dynamic Activity
As discussed earlier, each active smartphone in Smart-

Siren runs an agent that logs the communication activities
and reports to the proxy. For now we simply assume that a
user is willing to disclose his/her phone usage and activities
to the proxy. In Section 5, we will describe the mechanism
to protect the user privacy.

The information carried in each report is summarized in
Table 3. Basically, it describes the communications that
have occurred over the SMS messaging and the Bluetooth
channels, which are the primary means for the viruses to
infect the device. In our system, the SMS logging is done
by checking the ”Sent” folders in the MMS, SMS and Email
stores on the device. These folders contains all the mes-
sages that the user have composed using standard messag-
ing composer available on the phone. On the other hand,
the logging of Bluetooth activities is achieved using the base
properties of the ConnectionsBluetoothCount and Connec-
tionBluetoothDescriptions in the Windows Mobile operating
system.

There are two cases in which the device submits a re-
port. First, the device submits a report daily that describes
past communication activities on both the messaging and
the Bluetooth interfaces. The daily report can be submitted
either using SMS or over the Internet, e.g.,at night, when
the user has Internet connection at home. Secondly, each
device also keeps a long-term average (i.e. 7 days moving
average) of its traffic volume over both messaging and Blue-
tooth channels. Whenever the traffic since the last daily
report exceeds the long-term average of daily usage plus one
standard deviation, the device immediately sends a report to
the proxy using SMS, which is always available and provides
instant delivery.

The reason for having two different reporting methods is
to handle two types of viruses, namely trojans and worms,
separately. A trojan virus may hide in the device and pas-
sively utilize the resources over an extended period of time.
For example, Flexispy [6] records the user activities and tries
to send such information to the Flexispy server using SMS.
The periodic reports can be used to detect such passive tro-

Category Value

Identity 555-123-4567
Authentication digital signatures

[Optional Privacy] Submission Tickets
Log Date Dec 4, 2006

Mobility Profile CellID 1234
CellID 756
CellID 3215

Message Sent 555-111-1111
555-222-2222
555-333-3333

....
Bluetooth Sent 11:11:11:50:11:11

22:22:22:22:22:22
33:33:33:33:33:33

....

Table 3: Dynamic activity information reported by

a smartphone during the operational phase.

jans, which do not exhibit strong epidemic behavior. On the
other hand, a worm virus may aggressively replicate itself
in a short period, thus pro-active reporting is necessary for
the system to respond in a timely fashion and quarantine
the outbreak.

4.3 Joint Detection
The detection phase consists of the proxy sifting through

the collected data and trying to pinpoint suspicious behav-
iors that are atypical of normal user activities. Our proposed
solution includes the use of statistical average and threshold
to discover the rise in average messaging volumes. In addi-
tion, we lure the virus into performing abnormal activities
by inserting bait entries in the user contact list. Note that,
leveraging users with antivirus software installed to report
an incident is also an viable option for use with SmartSiren
framework.

In this work, our proposed framework aims to detect those
malwares that exploit the communication capabilities of a
smartphone. More specifically, we target the viruses that
make access to either the messaging channel or the Blue-
tooth channel. Smartphone viruses utilizing these two com-
munication channels have generated a tremendous amount
of buzz due to their novelty as well as their potential to
spread to a large number of handsets. Our general ap-
proach is to, first, systematically analyze the goals of a
communication-based smartphone virus, then comprehen-
sively evaluate what communication target the virus must
select to achieve its goal. Finally, based on the enumerated
communication target selection strategies for the smartphone
virus, we will respond with two detection plans, statisti-
cal monitoring and abnormality monitoring. When used in
conjunction with the information collected from the smart-
phone, it can accurately achieve viral activity detection.

The communication-based malwares can be loosely di-
vided into two categories: those that spread (i.e. communi-
cation contains viruses) and those that do not (i.e. commu-
nication contains content). However, these two categories
are not mutually exclusive as it may be the case that a
spreading virus carries a malicious payload that further ac-
cesses the communication channels for other purposes (e.g.
a spreading virus that cause the smartphone to spam other
mobile phone users). The goal of the content-based virus can
be further divided into two subcategories: those that steal

Targets Virus Content Communicated
Communicated Personal Unrelated

Information Information

From-Virus DoS [Flexispy] [Redbrowser]
From-Device [CommWarrior] Info Leak Spam
Randomized Infection [PBstealer] Spam

Table 4: Examples of existing viruses are shown
in brackets, otherwise the potential damage is
stated.

personal information from the device and those that deliver
device unrelated contents for either spamming or causing
usage charges to the users (e.g. to a premium number).

Independent of the virus goals, there are three general
strategies for viruses to acquire communication targets: From-
Virus, From-Device and Randomized. From-virus means the
virus brings a pre-defined set of targets with it to the vic-
tim. From-Device indicates that the virus extract the set
of target from the infected smartphone. Randomized does
not include a specific set of the target. Instead, the target
may randomly generated or happens to connect by chance.
Table 4 breaks down the specific types of attack that can be
achieved and illustrates their ideal target acquiring strategy.
Our solution responds to various virus goals through log-
ging the communication end point of the smartphone and
perform a general statistical monitoring based on the vol-
ume of the communication and a more specific abnormality
monitoring leveraging the user contact list and user mobility
profile.

4.3.1 Statistical Monitoring
Statistical monitoring is a general approach that attempts

to discover communication-based smartphone viruses when
these viruses over-utilize the smartphone’s communication
capabilities. This approach is geared toward fast spreading
worms as such malware would typically result in wild fluc-
tuation from normal usage. Specifically, for each user, based
on the user-submitted communication log, the proxy would
keep track of the average number of communications that
each user initiates each day using a 7 days moving average
window. We define Uthresh as the summation of the 7 days
moving average and its standard deviation. Uthresh captures
the normal usage of each users. In addition, each day the
smartphone users agent will count the number of commu-
nication that the users has initiated as Utoday. When the
user’s daily usage Utoday exceeds Uthresh, the user would be
moved from normal state into over-usage state and a report
would immediately be submitted to the proxy over the SMS
channel. While the communication access of a smartphone
virus can certainly help push Utoday over Uthresh, the over-
usage state does not guarantee that a particular handset is
infected.

In addition to monitoring the Uthresh for each user, the
proxy also monitors a global equilibrium, Pavg. Pavg is de-
fined as, on average, each day, of the entire smartphone
population, how many users would exceeds their Uthresh.
Pavg is an indicative equilibrium. When the daily count of
Ptoday exceeds wildly from Pavg, it can suggest that an ag-
gressive viral outbreak has occurred. To allow some natural
fluctuation of the Ptoday from Pavg, we apply a Detection
Threshold Multiplier (DTM) of 2 to Pavg. So for a partic-
ular day, when Ptoday, the count on the number of users

exceeding their Uthresh, becomes greater than 2 ∗ Pavg, the
proxy would deem this as an aggressive viral outbreak and
proceed to the alert phase on the group of smartphone ex-
ceeding their Uthresh in hopes of halting the outbreak.

4.3.2 Abnormality Monitoring
Statistical monitoring is effective in observing sudden and

wild change in behavior from the user population, and thereby
possesses the ability to detect fast spreading worms. Slower
worms, on the other hand, may evade detection by flying un-
der the radar. To combat slow infecting worms, we further
propose abnormality monitoring to complement statistical
monitoring.

In abnormal activity monitoring for messaging, we observe
that, of all current smartphone viruses that utilize the mes-
saging system, they often need to select a communication
target to contact. The goal of the communication typically
can be divided into two categories. First, the virus may
wish to achieve some form of financial gain or information
theft, as in the case of Redbrowser [21] and Flexispy [6].
Secondly, the virus would like to replicate and infect other
smartphones such as CommWarrior [21]. Note that viruses
need not be mutually exclusive as CommWarrior could be
designed to have a payload that aims to achieve targeted
messaging attack for financial gain or information theft. We
further observe that, to setup the target, the virus either
hardcodes a communication destination into the body of the
virus, or retrieves the victim’s information from the user’s
contact list. To address viruses belonging to the first group,
the proxy would actively maintain a top messaging destina-
tion list. For each destination, a counter will keep track of
the number of messages directed to this particular destina-
tion. When a destination becomes highly ranked, the proxy
would move onto the alert phase. For the second group of
viruses that utilize the on-device contact list, we utilize a
dummy entry approach to bait the virus into sending a mes-
sage into a non-existent mobile phone. Since normal users
would not typically message an invalid entry, logging such
an event will provide a strong indication that a virus has
infected this smartphone.

4.4 Alert
In the alert phase, once the detection has been confirmed,

the proxy will begin issuing targeted alerts to the smart-
phone population based on the information that they regis-
tered in the bootstrap phase. In particular, the proxy will
alert the users of their infected status so that users can take
action to disinfect the unit. For each infected user, the proxy
will also attempt to warn the smartphone units that can
come into contact with the infected units either physically
(Bluetooth) or logically (messaging).

In the previous section, we presented the joint detection
scheme for our proposed SmartSiren framework. Once the
proxy has identified viral behavior in the smartphone popu-
lation, the proxy will begin issuing alerts to the smartphone
population. A total of four types of alert will be issued as
summarized in Table 5. The message type BI and MI will
be directly issued to the units that reported viral behavior.
For connected units, those that are logically linked to the
units through contact list or physical proximity, the mes-
sage of BC and MC is issued.

Our alerting scheme for the Bluetooth connected units
using BC is as follows: based on the infected unit’s mobility

Bluetooth Messaging
Virus Alert Virus Alert

Infected Units BI MI

Connected Units BC MC

Table 5: Types of alert messages.

profile MPinfected, the proxy will alert all other units with
mobility profile MPuninfected that share the same location
as those in MPinfected. For example, if infected unit I’s
mobility profile includes location A, B, C and an uninfected
unit U’s mobility profile includes location B, F, H, then U
will be alerted since U and I share location B.

The alerting scheme for the messaging connected units us-
ing MC is as follows: for each infected units, all mobile phone
entries on its contact list that have also registered with the
proxy for service are alerted with message MC . Appearing
on the list of devices that the proxy monitors indicate that
the entry is indeed a smartphone and has the capability to
process message MC . Otherwise, the unknown mobile phone
entries are sent a generic SMS warning message.

The alert will reach the smartphone in the form of SMS
messages. The smartphone user agent will react to the alert
differently based on the type of alert received. Table 5 shows
the type of alert messages that a smartphone user agent
would receive.

When a smartphone user agent receives a message of type
BI , it means that this smartphone is believed to be infected
with a virus. The smartphone user agent will attempt to
shut down the Bluetooth interface and display a visual alert
to the user showing the type of Bluetooth activities that
has been recorded. If the activities are inconsistent with the
smartphone user’s Bluetooth usage, actions should be taken
by the user to rectify the problem.

When smartphone user agents receives a message of type
BC , it means that this user frequents a location that is
also visited by one of the infected users. Upon reception
of the message, the user agent will record the region in-
dicated by the proxy. The smartphone agent will keep a
watch on the current user location. When the user enters
the indicated region, the smartphone user agent will switch
to non-discoverable mode to avoid communicating with the
infected unit.

Reception of message MI indicates that the unit is in-
fected. Ideally, an infected unit should shut off the out-
going messaging interface to prevent the further spread of
the virus. However, Window Mobile currently does not of-
fer an API to intercept outgoing messages. Therefore, we
have opted to simply display a warning message along with
the recorded messaging log for users to verify the suspicious
activities.

Reception of message MC indicates that this smartphone
is on the contact list of a user that is infected. Windows
Mobile does offer an API to intercept incoming messages
and since the infected unit is unable to stop outgoing mes-
sages, we have opted to have the MC receiver to intercept
and only filter out infected users messages. Furthermore,
the smartphone user agent will try to remove any unread
message from the infected users.

5. PROTECTING USER PRIVACY
Privacy is a critical issue that impacts the incentive of

the users to join SmartSiren, because the information it col-

lects from the smartphone may contain sensitive informa-
tion, e.g., call records, SMS records, and network usage. In
practice, many users are reluctant to reveal such private in-
formation to the proxy. Without proper protection of user
privacy, it is difficult for SmartSiren to attract enough users
and reach the critical mass for accurate virus detection.

It is important to define what privacy we can protect.
Clearly, to perform any meaningful detection or alert oper-
ation, the users must sacrifice some privacy. For example,
in order to be notified when an acquaintance’s phone or a
frequently visited spot is polluted by viruses, users must reg-
ister their contact list and mobility profile with the proxy.
Therefore, SmartSiren does not attempt to provide perfect
privacy. Instead, it only ensures that the proxy cannot infer
any user’s daily activity from the collected data.

This, by no mean, implies that the privacy of static config-
uration data is not important. If a user is concerned about
the privacy of such data, he/she can simply choose not to
register it with the proxy, at the cost of sacrificing some tar-
geted alert services. As such, SmartSiren leaves users the
flexibility to trade off the services they receive for the pri-
vacy they are willing to sacrifice for the static configuration.

The privacy of dynamic activity, on the other hand, is
non-trivial to achieve due to the need for joint detection.
There are two basic approaches to protecting privacy: ob-
fuscation that hides the actual data in the reports (e.g.,
by encryption or hashing), and anonymization that hides
who submitted these reports respectively. Clearly, obfusca-
tion is not suitable in our context, because the proxy can
hardly perform joint analysis on the obfuscated data. How-
ever, anonymization is also problematic because it may be
abused by viruses or attackers to inject bogus reports and
damage the trustworthiness of detection results.

To ensure both user privacy and authenticated reports,
we present an anonymous and ticketed report submission
scheme. In this scheme, each smartphone can submit its re-
ports in an anonymous manner, but each report must carry
a unique cryptographic ticket. To prevent the proxy from
linking a ticket to its owner’s identity, the smartphones ex-
change their tickets using a proxy-oblivious scheme. In the
rest of this section, we describe anonymous report submis-
sion in Section 5.1, the ticketing mechanism in Section 5.2
and the anonymous alert strategy in Section 5.3.

5.1 Anonymous Report Submission
To protect the user privacy, we allow a smartphone to

submit its activity reports in an anonymous manner, i.e.,
without revealing its phone number or user identity. This is
achieved by leveraging the diversified communication chan-
nels available to the devices. As discussed in Section 4, a
smartphone can communicate with the proxy directly using
SMS, Email, WiFi, GPRS, or indirectly with the assistance
of a computer. Based on how the device obtains its network
address, these channels can be classified as either cellular-
based, such as SMS and Email, or IP-based, such as WiFi,
GPRS, and indirection from computers.

To ensure anonymity, the device submits its activity re-
ports only through those IP-based channels, unless no such
channel exists. Because a user never registers any associated
IP addresses with the proxy, the proxy cannot differentiate
who sent a report if it was received from IP networks. The
proxy may record the source IP addresses in the received IP
packets, but in many cases, a device acquires its IP address

from DHCP, thus very likely uses different addresses for dif-
ferent reports. Note that it is possible that the device may
temporarily have no IP-based connection. In such cases,
it can either defer the report submission until an IP-based
channel is available, or immediately submit the reports using
cellular-based channels such as SMS. The tradeoff is between
the privacy and the timeliness of report delivery, because the
cellular-based channels are always available but reveal the
sender’s phone number.

5.2 Ticketed Report Submission
While the anonymous report submission protects user pri-

vacy, it may be abused by the viruses or attackers to inject
bogus reports, possibly in large amounts, to disrupt the virus
detection. For example, an attacker may forge many reports
of abnormal activities and trigger system-wide false alarms.
Moreover, a virus may forge many reports of seemingly nor-
mal activities to disguise its actual behavior. In order to
defeat these attacks, the proxy must be able to differentiate
a forged report from the legitimate ones. However, we can-
not employ the traditional authentication techniques such as
MAC or digital signatures, because they reveal the sender’s
identity, hence the user privacy is lost.

To address the dilemma between the accountability of the
reports and user privacy, we propose a ticketing scheme that
can achieve both weak report authentication and user pri-
vacy. It is important to note that our design assumes the
proxy is curious but honest. That is, the proxy is allowed
to analyze the traces and try to infer private information,
but it must correctly follow the protocol. If the proxy is
malicious or compromised, the entire SmartSiren system is
broken, the defense is beyond the scope of this paper.
Ticket Distribution In our scheme, each legitimate re-
port must carry a valid ticket; otherwise, the proxy will not
accept it. The tickets are generated by the proxy and dis-
tributed to the smartphones. For this purpose, the proxy
picks up a secret key Kr and a secure hash function H . A
ticket is simply the tuple

(tid, te, HKr
(tid|te))

where tid is the unique ticket id, te is the expiration times-
tamp, and HKr

(tid|te) is the hash result of applying H ,
keyed by Kr, on the concatenation of tid and te.

Each ticket can be used only once. To sustain the sub-
mission of reports, the proxy periodically distributes a set of
tickets to each smartphone. For example, if a smartphone
submits one report everyday, the proxy can distribute 30
tickets to it once per month. This can amortize the over-
head of distributing tickets. With such a local ticket repos-
itory, a smartphone simply appends an unused ticket before
it submits a report, and then discards this ticket. On the
other hand, for each distributed ticket, the proxy keeps its
status of either “fresh” or “used” until its expiration time is
reached. Upon receiving a report, the proxy first checks the
validity of the embedded ticket, and accepts the report only
if the ticket carries correct hash value, has not expired and
has not been used before.

The use of cryptographic tickets ensures weak authenti-
cation in that each device can only submit one valid report
in each reporting period. However, it cannot ensure privacy
because the proxy can record which device each ticket is
distributed to. This way, when the proxy receives a report,
it can find the sender’s identity based on the ticket. Fortu-

nately, in our scheme, the tickets are not associated with the
devices, thus we can shuffle the tickets among the devices
using the following ticket exchange scheme.
Ticket Exchange The goal of ticket exchange is to pre-
vent the proxy from knowing which device holds what tick-
ets. One could possibly have a distributed protocol for the
devices to exchange tickets, e.g., using P2P networks. How-
ever, for simplicity and efficiency, we take a centralized ap-
proach in which the exchange is assisted by the proxy in an
oblivious manner.

In our ticket exchange process, there are two types of de-
vices, namely traders and tradees. When a smartphone reg-
isters with the proxy, it randomly picks up a type with equal
probability. That is, roughly half of the devices are traders,
and the other half are tradees. The proxy maintains a list of
currently active tradees. When a tradee needs to exchange
tickets, it simply notifies the proxy, which then adds it into
the list. On the other hand, when a trader needs to ex-
change tickets, it queries the proxy for active tradees using
an IP-based channel. Upon receiving such query, the proxy
randomly picks up a tradee from the current list and returns
it to the requesting trader. The trader then contacts the re-
turned tradee and exchanges tickets through SMS. Once the
transaction is completed, the tradee notifies the proxy and
has itself removed from the list of active tradees.

Essentially, the traders and the tradees use the proxy’s
assistance to find each other and facilitate ticket exchange.
However, because the traders query the proxy over an IP-
based channel, the proxy does not know the identity of the
requesting trader. This way, the proxy cannot track the
ticket exchange transactions, hence does not know what tick-
ets a device has after the exchange.

However, the above protocol works only if all smartphones
are benign. A malicious or infected smartphone can easily
disrupt it by repeatedly querying for tradees and exchanging
tickets with all of them. As a result, the malicious device can
collect a large number of valid tickets and then successfully
inject bogus reports. To defeat such cheating behavior, we
enhance the ticket exchange process as follows.
Cheating Prevention To prevent cheating in ticket ex-
change, our basic idea is to ensure each device can only
trade once within a fairly large amount of time, say one day.
This is difficult because the traders’ actions (i.e., querying
for tradees and exchanging tickets) must be oblivious to the
proxy; otherwise, the proxy is able to track the transac-
tions. In what follows, we describe how the proxy can limit
the trading rate of a trader, without knowing whom it ex-
changes tickets with.

Our cheating prevention mechanism is based on commu-
tative encryption [24]. For any message M and two keys K1

and K2, a commutative cipher E always satisfies:

EK1
(EK2

(M)) = EK2
(EK1

(M)) (1)

That is, with a commutative cipher, the order of encryption
operations does not affect the result. An example of com-
mutative ciphers is the Pohlig-Hellman algorithm [32]. Let
E−1 denote the decryption function for E.

In our scheme, the proxy and the smartphones each chooses
a secret key and never reveals the key to other entities. Let
KP be the proxy’s key and KA be a smartphone A’s key.
As before, the proxy maintains a list of active tradees, and
answer queries from the traders. However, when a trader A

receives the reply, which contains the identity of a tradee B,

it must construct a Transaction Description (TD) message
as follows:

M = (A, B, t)

where t is the current time. A encrypts the message using
its own key KA, and sends the ciphertext EKA

(M), together
with its identity, to the proxy in a Request-for-Encryption
(RE) message. The proxy keeps a cache of all REs received
in the past Tm seconds, which is the minimum time allowed
between two consecutive exchanges for a device. When the
proxy receives a RE from A, it checks whether the cache
already has a RE from A. If RE already exists, it sim-
ply drops the newly received RE. Otherwise, encrypts the
received EKA

(M) using its own key KP . The result, i.e.,
EKP

(EKA
(M)), is denoted by X1. The proxy returns X1 to

A.
Now A is ready to initiate ticket exchange with B. To do

so, A decrypts X1 using KA and sends the result E−1

KA
(X1)

to B. On the other hand, B first encrypts the received
E−1

KA
(X1) using KB . The result, i.e., EKB

(E−1

KA
(X1)), is

denoted by X2. Next B sends X2 to the proxy in a Request-
for-Decryption (RD) message. The proxy then decrypts X2

using KP and returns the result E−1

KP
(X2) to B. Finally, B

decrypts the received E−1

KP
(X2) using KB . The result, i.e.,

E−1

KB
(E−1

KP
(X2)), is denoted by X3.

At this time, B is able to verify whether A is indeed a
valid trader, because based on the commutative property,

X3 = E
−1

KB
(E−1

KP
(EKB

(E−1

KA
(EKP

(EKA
(M)))))) = M

This result is not surprising because A, B and the proxy each
applies one encryption and one decryption operation, using
their respective keys. Due to the commutative property,
the final result should be exactly the original Transaction
Description. Thus, B can check the final result X3 and
exchange tickets with A only if it includes both A and B.

Clearly, without the assistance from the proxy, a trader
cannot complete the above process and successfully exchange
tickets with any tradee. Since the proxy only allows a trader
to invoke the encryption once every Tm seconds, a trader
can exchange tickets no faster than once per Tm seconds.
Despite its conceptual complexity, the cheating prevention
mechanism is actually light-weight. For each transaction of
ticket exchange, it incurs only 5 messages, 3 encryption op-
erations and 3 decryption operations. Such overhead can
be further amortized by exchanging multiple tickets in one
transaction, so that it is invoked less frequently.

5.3 Anonymous Alert Strategy
The proposed anonymous report submission scheme can

protect the privacy of the users, but it takes away the proxy’s
ability to identify and reverse contact the users, which is
important in determining how targeted alert should be is-
sued. To overcome this short coming, two strategies can be
employed with each having its own tradeoff. First, instead
of pushing the alert, the proxy allow the users to pull down
the alert using the anonymous communication channel. The
cost of such a scheme is that user must more frequently con-
tact the proxy. Another approach is to include a transient
anonymous contact-back method when submitting the re-
port. Such an approach will require the users to setup an
email address that can perform indirect forwarding of the
proxy’s message to to the mobile handset’s SMS address.

6. IMPLEMENTING SMARTPHONE AGENT
We have implemented a prototype system of SmartSiren

to demonstrate the feasibility of our design. Due to limited
space, we only describe the smartphone-side implementation
here. The proxy-side implementation is relatively straight-
forward, as it is based on a PC running Linux.

The smartphones used in our prototype system are Do-
pod 577w [5], also known as i-Mate SP5/SP5m and Qtek
8300/83101 . These phones are equipped with a TI OMAP
850 processor (200 MHz), 64MB ROM, 64MB RAM, and
both Bluetooth (v1.2) and WiFi (802.11b) wireless inter-
faces. They are also capable of SMS/MMS messaging and
GPRS/EDGE data connection over cellular networks, and
we choose T-Mobile USA [20] as our cellular service provider.
The OS on these phones is Windows Mobile 5.0 Smartphone
Edition, and we use Visual Studio as development tool.

The smartphone agent needs to perform logging for mes-
saging and Bluetooth communication, as we have described
in Section 4. While ”Sent Box” already logs the outgoing
SMS messages, it is unreliable as its content may be al-
tered. Instead, we leverage the messaging delivery report
mechanism provided by the cellular network. By turning on
the mechanism, through a registry value on the phone, we
can request, intercept and then log the delivery report sent
back by the cellular network about the success or failure of
each SMS message. For Bluetooth interfaces, we leverage
the State and Notification Broker API to gather Bluetooth-
related information using the base properties of Connec-
tionsBluetoothCount and ConnectionsBluetoothDescriptions.

In addition to logging communication activity, the smart-
phone agent also maintains a mobility profile of the user by
logging the locations that the user frequently visits. The lo-
cation information is based on cell ID that is readily supplied
by the cellular network. There are two methods in retriev-
ing cell ID from the smartphone. First, it can be achieved
through a hack that reads the data from a specific mem-
ory location of the smartphone. In the case of the Dopod
577w, the cell Id information is stored at the address space of
0x8ffb0174. However, the location where each smartphone
stores its cell ID is device-dependent. The generic approach
that is suitable to most smartphone model and the one that
we used in this work is to directly communicate with the
GSM modem on the device by issuing AT commands [2].
The AT command for querying the cell ID is “AT+creg?”.

One issue in using cell ID to identify location is that dif-
ferent cellular carriers have their own cell tower infrastruc-
ture. A user using T-Mobile would perceive a different cell
ID from a user using Cingular even when they stand in the
same location. To overcome such problem, it is necessary for
the proxy to obtain the physical locations the of cell towers
from different carriers, so that the cell IDs from different
carrier can correlate to a same geographical location. The
cell tower locations may be directly provided from cellular
carriers, but there are extensive public efforts to create such
a database of cell tower locations [3].

In our implementation, the smartphone agent utilizes SMS
as the primary means of communication with the proxy. To
send a SMS message, the smartphone agent would compose
the message and send it using the SmsOpen(), SmsSendMess-

1Although the name differs under different brands, they are
all manufactured by HTC [7] under the code name of HTC
Tornado.

sage() and SmsClose() API provided by Windows Mobile.
On the reverse path, the proxy can compose an Email and
have it delivered to the smartphone agent as a SMS mes-
sage as described in Section 4. When the SMS message
arrives, the reception is done using Window Mobile’s Mes-
sageInterception APIs. Using these APIs, we can construct
a MessageInterceptor object that describes the conditions
for which the message should be intercepted. In our im-
plementation, the condition for intercepting SMS messages
is specified as the inclusion of the proxy’s email address in
the SMS message body. Only such SMS messages are inter-
cepted by our smartphone agent, while the rest of incoming
messages are directly delivered to the Text Messaging Inbox.

7. EVALUATION
In this section, we evaluate the effectiveness of SmartSiren

against both messaging and Bluetooth viruses using trace-
driven simulations.

7.1 Messaging Viruses
We first consider the messaging viruses that spread them-

selves over the cellular messaging system. After infecting a
smartphone, such viruses may launch further attacks, e.g.,
sending SMS messages to premium numbers. To drive the
simulations, we leverage the 3-week SMS trace that we have
collected from a national cellular service provider in India.
The trace contains approximately 3.91 million users that
have sent or received SMS messages during a 3-week data
collection period. The trace records the sender/receiver
pair for each SMS message that has been transmitted and
should reflect a normal, virus-free cellular messaging system
as smartphone virus is not yet a widespread phenomenon.

7.1.1 Preventing Messaging Virus Outbreak
We first study whether SmartSiren can effectively prevent

the outbreak of messaging viruses through early detection
and alerting. To understand how a messaging virus propa-
gates in the cellular network without SmartSiren, we have
conducted several simulations, in which a virus outbreak
starts from one single infected user randomly chosen from
the user population. The simulated infection behavior of
the virus is similar to that of CommWarrior [21]. Once it
has infected a smartphone, the virus will send out a copy
of itself to each smartphone on the user’s contact list. One
limitation of our trace is that it does not contain the user’s
contact list information. To model such contact relation-
ship, we pre-processed the trace and define a contact list for
each user as all other users that he/she ever contacted in the
trace. We believe this assumption is reasonable and captures
most of the contact relationship in practice. Once the virus
is delivered to a recipient via SMS, the recipient will open
the message after a random delay, from 5 seconds up to 2
hours. This delay reflects the reality that a user may only
check his/her phone occasionally, and gives us a conservative
estimate on the propagation speed of the virus. Once the
user opens a message sent by the virus, his/her smartphone
will become infected with a probability of P(infection).

Figure 2 shows the simulation results of virus propagation
speed with P(infection)=1, which resembles a virus that ex-
ploits software bugs or OS vulnerabilities, or P(infection)=0.5,
which resembles a virus that relies on social engineering. It is
interesting to note that in Figure 2, a virus with P(infection)=1
can quickly infect the entire smartphone population in less

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

In
fe

ct
ed

 s
m

ar
tp

ho
ne

s
(%

)

Time (1000 seconds)

P(infection) = 1.0, without proxy
P(infection) = 1.0, with proxy

P(infection) = 0.5, without proxy
P(infection) = 0.5, with proxy

Figure 2: The spreading trend of

messaging virus over time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

%
 o

f t
ot

al
 p

op
ul

at
io

n

Days

P_today
P_avg * DTM

proxy triggered

Figure 3: The top line is the de-

tection threshold and the bars show

the percent users exceeding Uthresh

 0
 1

 2
 3

 4
 5 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

 5.5e+06
 6e+06

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

of msg

User #

Dst. #

of msg

Figure 4: Daily usage of 5 random

users

Figure 5: No. of msg seen by the

proxy with 0.1% infected users

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000

N
o.

 o
f I

nf
ec

te
d

us
er

s

Time (seconds)

P(detection)=0.5, with alert
P(detection)=1.0, with alert

 w/o alert

Figure 6: The spreading trend of

Bluetooth virus over time

than 10 hours, based on our real traces. On the other hand,
if a virus mainly relies on social engineering, its spreading
capability is limited and often be capped. For example, with
P(infection)=0.5, the virus can only infect less than 50% of
the smartphones. This is because a significant portion of
users is more security conscious and will not open suspi-
cious files embedded in the received messages, which can
effectively protect their phones from being infected.

Now we turn on the protection of SmartSiren and see how
the virus infection speed changes. In the simulation, the
proxy uses Pavg ∗ DTM , where DTM = 2 as the threshold
for virus activity detection. We empirically chose the DTM
value as 2 to tolerate some inherent dynamics in the traffic
volume. In the SMS trace we collected, during days when
infection has not taken place, we do no observe any instance
that Ptoday exceeds the detection threshold. However, on the
day (day 13) when the virus is injected, Ptoday count quickly
rises above the threshold, resulting in the proxy moving onto
the alert phase. Such variation of Pavg ∗ DTM and Ptoday

is shown in Figure 3.
The performance of SmartSiren in containing the virus

is shown in Figure 2. The alerts issued by the proxy help
the warned smartphone unit to filter out potentially harmful
messages coming form the infected users. For P(infection)=1,
the smartphones that the virus can eventually infect is lim-
ited to only 19.7% of the population, as opposed to the
entire population when SmartSiren is not available. For
P(infection)=0.5, the infection strength of the virus is 18.18%
and 44.38% of the smartphone population with and without
SmartSiren, respectively.

To study how much messaging overhead the SmartSiren
has consumed, we compare the number of messages that has

Message without with
Type proxy proxy
User 5027903 (31.72%) 5027903 (38.2%)
Virus 10823617 (68.29%) 3703404 (28.2%)

Detection Nil 879606 (6.7%)
Alert Nil 3539081 (26.9%)

Total 15851520 13149994

Table 6: Message distribution for P(infection)=1.0 and

DTM=2.0

been delivered in the cellular system. The result is shown
in Table 6. Without SmartSiren, during the virus outbreak,
approximately 15.8 million messages were sent and more
than 68% of which are generated by the virus. With Smart-
Siren in place, the total number of message sent is reduced
to about 13.1 million. As the virus was quarantined, only
about 3.7 million viral messages are injected into the system.
SmartSiren related messages only consumed about 33.6% of
the total messages. Note the large amount of alert messages
is necessary in order to “catch up” the virus spread.

7.1.2 Detecting On-Device Abnormality
Once a messaging virus infects a smartphone, it is capa-

ble of inflicting various damages on the device, e.g., using
the messaging system to deliver private information to a re-
mote third party. Flexispy [6] is a representative example of
such privacy-leaking viruses. Other viruses also exist, such
as Redbrowser [21], which do not steal personal information
but send messages from an infected phone to a premium
number in hope of achieving financial gain. Regardless of

their actual intent, these viruses share the same strategy in
acquiring the recipient number for its SMS messages, be-
cause the virus must bring with it a recipient number, so
that the attacker can benefit from the stolen information or
receive financial gains.

The benefit of SmartSiren in such cases is the provision a
bird-eyes view of the messaging behavior of the entire smart-
phone population, based on the reports submitted by indi-
vidual smartphones. This bird-eyes view can reveal abnor-
mality that can not be observed locally by each individual
smartphone. Assuming that a virus, which acquires infor-
mation from infected smartphone, has spread out in the
smartphone population. Those infected smartphones will
only submit a daily report to the attacker. This extremely
low volume of traffic will be hard for a single user to detect.

Figure 4 shows five randomly selected users from the trace
and their messaging activities for a randomly selected day.
In Figure 4, we have inserted a rogue message into each of
the five users’ record and it is hardly noticeable which mes-
sage is being sent by the virus. On the other hand, based on
the aggregated reports submitted by the smartphone, the
SmartSiren proxy can draw a system wide picture of which
destination is suspicious due to the high volume of incoming
traffic. Figure 5 provides a system-wide messaging activ-
ity view as seen by the SmartSiren proxy for five randomly
selected days. The erected long line for that particular desti-
nation is in fact the rogue message that we have injected into
only 0.1% of infected users. The comparison between Fig-
ure 4 and Figure 5 shows that SmartSiren can easily identify
such suspicious activities.

7.2 Bluetooth Viruses
Next we evaluate the effectiveness of SmartSiren against

emerging Bluetooth viruses. Unlike the message viruses that
can virtually spread between any two smartphones, a Blue-
tooth virus only spreads in the host’s local vicinity due to the
short communication range of Bluetooth channels. Thus,
our simulations must be driven by a mobility profile that
precisely specifies where the users are at any time. Unfortu-
nately, our SMS traces do not contain such information due
to privacy concerns. To overcome this barrier, we leverage
the metropolitan-area mobility model developed by [36]. In
this model, a city is divided into multiple regions. Each user
follows random waypoint mobility model within each region,
and probabilistically travels from one region to another (i.e.
going to work/home). The probability of such inter-region
traversal is extracted from the results in [36].

Specifically, we simulate 100K users in a city, which is di-
vided into 10×10 zones (each zone is 1000m×1000m). These
users follow the above metropolitan-area mobility model.
Initially, one randomly chosen phone is infected by the Blue-
tooth virus. An infected phone will infect its local neighbors
within 10 meters after 5 seconds if such a neighbor has not
turned its Bluetooth interface into non-discoverable mode.
Once a smartphone makes an infection attempt, the proxy
has a chance of P (detection) to detect it. In case the proxy
successfully detects the infection attempt, it sends alerts to
the zone where the infection occurs. As a result, all phones
in that infected zone will eventually switch their Bluetooth
interfaces to non-discoverable mode.

Figure 6 shows the simulation results of number of infected
phones over time with P(infection)=1.0. In this setting, we
also evaluate the number of infected users under different

P(detection). One thing to note is that in figure 6, a virus
can quickly infect the entire smartphone population in less
than 3 hours, based on the mobility pattern in [36]. On the
other hand, the proxy can always catch the infection attempt
(P(detection) = 1.0), our proposed solution can limit the
number of infected users to 222, which is only 0.222% of
the population. Even if our proxy cannot always catch the
infection attempt, i.e. P(detection) = 0.5, our proposed
solution can still effectively limit the number of infected use
to 420. This shows that using mobility profile can efficiently
quarantine Bluetooth virus outbreak.

8. RELATED WORK
Computer viruses have been plaguing the Internet for

many years, and a number of detection and defense mech-
anisms have been proposed [29, 30, 35, 38]. However, only
recently have the smartphone viruses attracted much at-
tention in the research community. The initial studies on
smartphone viruses [28, 26, 33] mainly focused on under-
standing the threats and behavior of such emerging viruses.
For example, [28] examines various types of attacks that the
infected smartphones can launch, and suggests potential de-
fense mechanisms. The threats of smartphone viruses are
further analyzed in [26], along with a categorization based
on the goal of these viruses. [33] demonstrates the vulnera-
bility of the SMS system, which can be exploited to launch
battery exhaustion attacks.

There are also several recent works on modeling the prop-
agation of mobile viruses. For example, [31] proposes a
new probabilistic queuing framework to model the spreading
of mobile viruses over short-range wireless interfaces, (e.g.,
Bluetooth). [25] provides an in-depth examination on the
vulnerabilities of smartphones and proposes another model
for viruses spreading over short-range radio and cellular mes-
saging system. [34] investigates worms in Bluetooth envi-
ronment and recommends deploying monitoring systems in
high traffic area. Our solution is inline with their recom-
mendations, as each smartphone user agent also serves as a
monitoring entity at their respective location.

The vulnerability of SMS services is demonstrated in [27],
which that shows the cellular infrastructure can be easily
crippled by automated attacks launched from either the In-
ternet or a set of infected smartphones. In a followup work
[37], several techniques have been proposed to mitigate the
damage of such DoS attacks through queuing techniques in-
side the cellular infrastructure. While these techniques can
mitigate the effects of a congested SMS channel, they cannot
eliminate the DoS attacks or quarantine the viruses.

The above studies provided valuable insights on the threats
and the behavior of the smartphone viruses. However, the
problem of quarantining smartphone virus outbreaks, to our
best knowledge, has not been addressed. Our proposed
SmartSiren system differs from, and complements, the ex-
isting solutions [28, 37] in that it requires limited support
from the cellular network and protects the smartphones from
virus infection through early detection and alerting services.

9. DISCUSSION
User Agent Integrity The smartphone user agent in

our design may potentially become the target of virus at-
tack. The attack may be manifested in one of the two forms:
destruction or compromise. For destruction of smartphone

user agent, it can be detected by the lack of reporting from
the smartphone user agent. For compromise of the smart-
phone, an integrity checker [23] can be employed to detect
the modification made to the smartphone user agent.

False Positive During legitimate events, such as natural
disaster, false positive may emerge in our system. These
forms of unusual events will be difficult to distinguish from
virus outbreak based only on statistical analysis. To address
this issue, an user survey system can be employed to query
a subset of the suspected user on whether the suspicious ac-
tivity is intentional. If users confirm the suspicious activity
then the proxy will refrain from reaction.

Contact List Privacy While some users may not be
willing to reveal their contact list. In practice, many users
are indeed doing so, provided there are enough incentives.
Danger Inc. [4] is better known for its popular handset, T-
Mobile Sidekick [20]. All data on the phones, including pic-
tures, contact list and messages are all transparently backed
up on the Danger server to allow users to (1) conveniently
access them over the Internet using desktop PC, and (2)
restorate the data on a new phone in case the old handset
is damaged or lost.

Cell Tower ID In our design, we leverage cell tower ID
as the means to marking user location. Cell tower range
can vary from a few kilometers to tens of kilometers result-
ing in location imprecision. However, this problem can be
mitigated by considering multiple cell tower IDs. In fact, as
we discovered through our implementation, it is possible to
retrieve up to seven cell tower IDs and their respective sig-
nal strength from the smartphone device. If combined with
some prior knowledge about the location of the cell tower, it
is possible to produce higher precision location information.
Navizon [14] is one example.

10. CONCLUSION
The era of smartphone is on the horizon, and so is smart-

phone virus. The smartphones are particularly vulnerable to
viruses due to their versatile communication capabilities, yet
are difficult to harness due to their resource constraints and
intermittent network connectivity. As a result, the viruses
can easily spread out and cripple both the smartphone users
and the cellular and telephony infrastructures.

To this end, we have designed and implemented Smart-
Siren that can prevent smartphone virus outbreaks through
early detection and targeted alerts. SmartSiren requires lim-
ited assistance from the cellular infrastructure and poses
minimal processing overhead to the smartphones. While
the users can enjoy the targeted virus alert services, their
privacy is also protected. The feasibility and effectiveness of
SmartSiren have been confirmed by both real implementa-
tions and trace-driven simulations. We believe that Smart-
Siren can be readily used to provide a first line of defense for
the smartphone population to combat the emerging viruses.

11. ACKNOWLEDGMENTS
We appreciate the constructive comments by our shep-

herd, Dr. Richard Han and the anonymous reviewers.

12. REFERENCES
[1] 29A lab: http://vx.netlux.org/29a/.
[2] 3GPP AT commands: http://www.3gpp.org/.
[3] Cell Spotting: http://www.cellspotting.com/.

[4] Danger Inc.: http://www.danger.com/platform/exp.php.
[5] Dopod 577w: http://www.dopodasia.com/.
[6] Flexispy: http://www.flexispy.com.
[7] HTC: http://www.htc.com/.
[8] http://developer.orangews.com/orgspv/comdefq.aspx.
[9] http://msdn.microsoft.com/windowsmobile/.

[10] https://www.symbiansigned.com/app/page.
[11] http://wiki.spv-developers.com/.

[12] http://www.f-secure.com/weblog/archives/archive-
082005.html.

[13] Mobile malware evolution: An overview:
http://www.viruslist.com/.

[14] Navizon: http://www.navizon.com.
[15] Phone viruses: how bad is it?:

http://www.newscientist.com/article.ns?id=dn7080.
[16] Prank directs phones to call police:

http://news.zdnet.com/.

[17] Securing consumer-friendly smart phones:
http://news.com.com/.

[18] Sports fans in Helsinki falling prey to Cabir:
http://news.zdnet.com/.

[19] T-Mobile SMS-to-Email:
http://wiki.howardforums.com/index.php/.

[20] T-Mobile USA: http://www.t-mobile.com/.
[21] Virus Library: http://www.viruslibrary.com/.
[22] Windows mobile business value for mobile operators:

http://download.microsoft.com/.

[23] www.sans.org/resources/idfaq/integrity checker.php.
[24] R. Agrawal, A. Evfimievski, and R. Srikant. Information

sharing across private databases. In ACM SIGMOD ’03,
pages 86–97. ACM Press.

[25] A. Bose and K. G. Shin. On mobile viruses exploiting
messaging and bluetooth services. In SecureComm 06.

[26] D. Dagon, T. Martin, and T. Starner. Mobile phones as
computing devices: The viruses are coming! IEEE
Pervasive Computing, 2004.

[27] W. Enck, P. Traynor, P. McDaniel, and T. L. Porta.
Exploiting open functionality in sms-capable cellular
networks. In ACM CCS ’05.

[28] C. Guo, H. J. Wang, and W. Zhu. Smart-phone attacks and
defenses. In HotNets III, 2004.

[29] H. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. In Usenix Security
Symposium, CA, 2004.

[30] C. Kreibich and J. Crowcroft. Honeycomb - creating
intrusion detection signatures using honeypots. In HotNets
II, Boston, November 2003.

[31] J. W. Mickens and B. D. Noble. Modeling epidemic
spreading in mobile environments. In ACM WiSe ’05.

[32] S. Pohlig and M. Hellman. An improved algorithm for
computing logarithms over GF (p) and its cryptographic
significance. IEEE Transactions on Information Theory,
IT-24:106–110, 1978.

[33] R. Racic, D. Ma, and H. Chen. Exploiting mms
vulnerabilities to stealthily exhaust mobile phone’s battery.
In SecureComm 06.

[34] J. Su, K. K. W. Chan, A. G. Miklas, K. Po, A. Akhavan,
S. Saroiu, E. de Lara, and A. Goel. A preliminary
investigation of worm infections in a bluetooth
environment. In WORM ’06.

[35] G. V. Sumeet Singh, Cristian Estan and S. Savage.
Automated worm fingerprinting. In OSDI ’04, 2004.

[36] D. Tang and M. Baker. Analysis of a metropolitan-area
wireless network. Wirel. Netw., 2002.

[37] P. Traynor, W. Enck, P. McDaniel, and T. L. Porta.
Mitigating attacks on open functionality in sms-capable
cellular networks. In ACM MobiCom ’06.

[38] C. C. Zou, W. Gong, D. Towsley, and L. Gao. The
monitoring and early detection of internet worms.
IEEE/ACM Trans. Netw., 2005.

	Introduction
	Smartphone Viruses
	Existing Smartphone Viruses
	Virus Categorization
	Implementing Viruses on Windows Mobile
	Application Unlock
	Implementing Smartphone Viruses

	Challenges
	Design
	Architecture and System Components
	Smartphone Agent
	Proxy

	Collecting Information
	Registering Static Configuration
	Reporting Dynamic Activity

	Joint Detection
	Statistical Monitoring
	Abnormality Monitoring

	Alert

	Protecting User Privacy
	Anonymous Report Submission
	Ticketed Report Submission
	Anonymous Alert Strategy

	Implementing Smartphone Agent
	Evaluation
	Messaging Viruses
	Preventing Messaging Virus Outbreak
	Detecting On-Device Abnormality

	Bluetooth Viruses

	Related Work
	Discussion
	Conclusion
	Acknowledgments
	References

