
1

Achieving Delay and Throughput Decoupling in
Distributed Fair Queueing Over Ad Hoc Networks

Jerry Cheng and Songwu Lu
UCLA Computer Science Department, Los Angeles, CA 90095

E-mails:
�
chengje, slu � @cs.ucla.edu

Abstract— This paper describes an algorithm that achieves de-
lay and throughput decoupling in distributed fair scheduling in
multihop ad-hoc wireless networks. The solution allows to support
both low-bandwidth, low-delay and high-bandwidth, high delay
applications in a single framework, without wasting much band-
width to realize the low-delay requirement. We demonstrate the
effectiveness of our algorithm in servicing various types of appli-
cations through ns-2 simulations.

I. INTRODUCTION

In an ad hoc network, groups of networking devices com-
municate with one another using wireless radios. By virtue of
their ability to operate with a peer-to-peer network model, ad
hoc networks offer convenient infrastructure-free communica-
tion over the shared wireless channel. In such a wireless net-
work, users are expected to run a rich set of data applications,
e.g., both error-sensitive and delay-sensitive applications, over
the bandwidth-constrained wireless medium. Therefore, the is-
sue of providing fair and bounded delay channel access among
multiple contending hosts over a scarce and shared wireless
channel has come to the fore.

Fair queueing has been a popular design paradigm to achieve
packet-level qualities of service (QoS), in terms of bandwidth,
delay, and fairness, in wired networks as well as wireless cel-
lular network [1]–[5]. Several recent research efforts [7] have
formulated the problem of fair packet scheduling in ad hoc net-
works to address the unique characteristics of such networks.
These issues include location-dependent contention, the dis-
tributed nature of ad hoc fair queueing, channel spatial reuse,
and how to manage a potentially large number of flows in a
dense and mobile network graph. Furthermore, the algorithms
have to be fully distributed and scalable.

In this paper, we propose a novel distributed fair queu-
ing algorithm that ensures fair sharing of the wireless chan-
nel and provides delay and throughput decoupling. Delay
and throughput decoupling is important over the bandwidth-
constrained ad hoc wireless networks. Some network appli-
cations are more concerned with the fair share of bandwidth,
e.g., file transfer, without stringent requirement on packet de-
lay, while others, e.g., audio traffic, are more interested in low
average delay but low throughput. How to efficiently support
both high-throughput, high-delay applications and low-delay,
low-throughput applications, within a single framework poses
a unique challenge to a distributed fair queueing design. We
also describe the implementation of the algorithm within the
popular CSMA/CA paradigm. Through both simulations and

F22

F10 1

3

Fig. 1. Example 1

0 1

2

F6

34

5

F1

F2

F3

F4

F5

Fig. 2. Example 2

analysis, we show that the distributed fair queueing design per-
forms locally coordinated scheduling decision, decouples the
delay and throughput requirement of applications, and collec-
tively achieves desired global properties such as fairness, scal-
ing and network efficiency.

The rest of this paper is organized as follows. Section II de-
scribes background information. Section III characterizes the
desirable properties of the solution, and proposes a distributed
fair queueing algorithm that achieves delay and throughput de-
coupling. Section IV describes the distributed implementation
of our design and Section V presents our simulation results.
Section VI discusses the design and Section VII discusses some
related work. Section VIII concludes this paper.

II. BACKGROUND

We focus our study on the packet-switched wireless network,
where data transmissions are performed over the shared, multi-
hop wireless channel. Since wireless data is locally broadcast,
a transmission is successful only if the receiver is within the
range of the sender. To achieve delivery from the source to the
destination, the packet may have to traverse multiple wireless
hops. We make the following standard assumptions: (1) a colli-
sion occurs when the receiver is within the range of two simul-
taneously transmitting nodes, (2) a node cannot transmit and re-
ceive a packet simultaneously, (3) the nodes have the ability to
perform local carrier sensing, and (4) we do not consider ran-
dom channel errors; link-layer retransmissions should be able
to help from recovering from such interference-induced losses.
The unique issues of such networks include:

1) Channel Contention: In a wireline network, the transmis-
sion of each link can be done independently and simulta-
neously. In a wireless environment, however, this feature
does not hold. Each node must compete with neighboring
nodes to access this shared medium. This may lead to se-
vere transmission collisions. Consider Figure 1 as an ex-
ample, where a 4-node topology is shown with 2 directed

2

lines and 4 dashed lines. The 2 direct lines represent two
single-hop transmissions and the four dashed lines rep-
resent the nodes which are within the radio transmission
range of one another. All the nodes are within a com-
mon neighborhood. In a wireline environment, Flows ���
and ��� can transmit packets simultaneously. However,
if nodes ��� and ��� transmit simultaneously in a wire-
less environment, collisions will occur for both flows. In
order to make this network functional, the transmission
precedence has to be organized properly.

2) Location-Dependent Spatial Reuse: If two flows are out
of each other’s transmission range, they may transmit si-
multaneously without interfering with each other. This
leads to better aggregate throughput. In the ring topology
of Figure 2, there are three sets of flows that can trans-
mit simultaneously by spatial reuse, Flows � � and ��	 ,
Flows �
� and �
� , and Flows ��� and �
 . Without proper
scheduling, some flow sets may be scheduled more often,
resulting in unfair share of the channel.

3) Delay: In an ad-hoc network, packet delay may vary a lot.
For throughput-sensitive data traffic such as FTP, delay is
not a main concern. However, for delay-sensitive traffic
such as audio, delay has a profound impact as excessive
delay or delay jitter can render a real-time conversation
inaudible.

III. DESIGNING A DISTRIBUTED FAIR QUEUING

ALGORITHM

A. Basic Requirements

The following are the desirable properties for a distributed
fair queueing algorithm:� Fully Distributed: Since the packet arrival information

is only available at each node, a distributed solution is
needed.� The solution must be efficient: If fairness is the only goal,
we can schedule only one flow to transmit at a time in
an orderly fashion. However, a lot of wastage can occur
due to the squandered spatial reuse. There lies the tradeoff
between the fairness concern and the aggregated through-
put. The solution must handle this tradeoff properly in
order to maximize the overall throughput. Specifically,
the set of non-interfering flows that can transmit simul-
taneously needs to be selected judiciously so that the sys-
tem throughput can be maximized under the fairness con-
straint.� The design needs to be application aware: Different appli-
cations will have different requirements; some care more
about throughput and others are more interested in average
delay. Servicing delay-sensitive traffic once such packets
arrive may provide a good delay bound, but might vio-
late the fairness constraint. Strictly enforcing fairness at
a fine granularity, on the other hand, would cause delay-
sensitive traffic to miss its deadline. The solution has to
meet requirements of both applications.

B. A Novel Distributed Fair Queuing Algorithm

We now present our distributed fair queuing algorithm that
achieves delay and throughput decoupling. The base algorithm

[9], is adapted from the popular Start-time Fair Queuing (SFQ).
In SFQ, there are two main actions: tagging and scheduling.
Tagging helps the system to maintain a sense of lead and lag
in the amount of service each flow receives, while scheduling
advances the system service by transmitting the lowest-tag flow
in order to preserve fairness across all flows. The operations of
the algorithm are as follows:

� Tagging: In SFQ, the current system virtual time is the
tag of the packet being served. However, in distributed
fair queueing, this information is not readily available at
each node. Allowing a system-wide flood of the virtual
time is too costly. Instead, we use a localized virtual time
in the local neighborhood. During each transmission, each
node can piggyback the current service tag with the packet,
while the neighboring nodes overhearing the packet keep a
copy of the service tag in order to determine the local vir-
tual time. The local virtual time obviously may differ from
the global virtual time. The tradeoff here is the inaccuracy
in approximation. The tagging operation is as follows: For
each flow � in the local table, we simulate the SFQ algo-
rithm to assign two tags for each arriving packet: a start tag
and a finish tag. Specifically, for the head-of-line packet�

of flow � , which arrival time is ���������� and packet size
is ��� , its start tag ���� and finish tag ���� are assigned as
follows:

1) If � is continually backlogged, then
������ �!��#" �%$ �!��&�'�����()� �+*-, �/.

2) If � is newly backlogged, then
������1032-465#7�8:9<;/56�������=��>�=�@? $ �!��&�'����A()� �+*-, �/B
where C consists of all flows stored in the table of
node D , and ;E5>���=� is flow F ’s virtual time at � .

� Scheduling: Identifying the smallest tag among all back-
logged nodes is a global computation. We take a table-
driven, backoff-based approach in scheduling transmis-
sion. The approach uses local information only and in-
volves local computation. With the tagging and a method
of exchanging tags in place, each node has the knowledge
of its local neighborhood. These tags are stored in a table
and ordered so that each node can learn whether that node
itself has the minimum tag. Since we are also interested
in maximizing spatial reuse, we do not confine the trans-
mission to the minimum-tag holders only. Instead, at each
node, we set its backoff value to be the total number of
flows that have a smaller service tag. This way, the flow
with the smallest service tag will transmit first (since it has
the smallest backoff period), and other contending flows
will restrain from transmissions once they hear the trans-
mission through carrier sensing. In addition, flows that
are not interfering with the minimum-tag flow can trans-
mit concurrently, starting from the one with smaller back-
off value. This will improve the spatial reuse and overall
channel utilization. For each flow � , it sets its backoff pe-
riod G � as G � �IH 5#7�8IJ �LK 5�M K � � minislots, where K �
and K 5 denote the service tags of flow � and flow F , respec-
tively, � is the set of all the neighboring flows in the table,
and J �LNO� denotes the indicator function, i.e., J ��NP�Q�SR B ifNUT1V ; J ��NP���'V , otherwise.

3

Sk = 10
FTP2 FTP1

Sk = 512 Sk = 522
FTP2

Fk = 512
FTP1

Fk = 522
FTP2 FTP1

Fk = 1024

FTP2
Fk = 1034

Without Delay and Throughput Decoupling

With Delay and Throughput Decoupling

Time

Sk = 0
FTP1

Fk = 276
Audio1 Audio1

Fk = 788

Sk = 532
Audio1

Sk = 20
Audio1

Fig. 3. Delay and Throughput Decoupling

The combination of the above two mechanisms allows us to
select a set of non-interfering flows for transmission, includ-
ing the flows with local minimum service tags. We call our
method the Extended-Maximizing-Local-Minimum Fair Queu-
ing (EMLM-FAQ).

C. Delay and Throughput Decoupling

Wireless application may experience large variation of delay
due to the nature of shared wireless medium. In this section,
we improve our distributed fair queueing scheduling of the pre-
vious section and provide a better quality of service to wireless
traffic through our method of delay and throughput decoupling.

The idea behind delay decoupling is novel and simple.
Among all the packets that can be scheduled in a round of
transmission, we identify a set of delay-sensitive applications.
Instead of applying the regular SFQ scheduling, we do local
swapping of transmission order. The packets of delay-sensitive
applications will be scheduled earlier than the packets of non-
delay-sensitive applications. This way, we provide a better de-
lay bound for them without violating the fairness property. The
detailed operations are:

1) If � is continually backlogged, then
���� � ����#" � ()� �#" �� *<, � .

2) If � is newly backlogged, then
���� �1032%4 5#7�8 9-; 5 ���A�L�=��>�=� ? .

3) For both of above case
�!��&�'�����()� �� *<, �

.
where , � is the delay weight.

Instead of scheduling packets according to its start tag, we
would schedule it according to the finish tag. The finish tag is
not used in calculating the next start tag, thus preserving the
long-term fairness feature.

Figure 3 illustrates a scheduling example of two FTP appli-
cations and one audio stream. In this example, each data packet
is 512 bytes. Without decoupling, scheduling these streams
would cause the audio stream to be transmitted at the end of
each round. With decoupling, we assign the audio stream with
a delay weight of 2 and the two FTP sessions a delay weight
of 1. Furthermore, we schedule the packets based on the finish
tag calculated above. Through local swapping in transmission
orders, the audio stream benefits from experiencing smaller de-
lays.

IV. IMPLEMENTATION

This section describes a practical implementation of the dis-
tributed algorithm. The implementation is done within the
CSMA/CA paradigm.

A. Queuing Level

At the queuing level, the goal is to maintain per application
fairness within each outgoing flow. The basic operation is queu-
ing and dequeueing of packets.

1) Queuing Process: When the queue first receives an out-
going packet, it will attempt to identify the packet type through
the packet header. If the packet appears to be a control packet
for the network, it is queued at the end of the high-priority con-
trol packet queue. However, if the packet appears to be a data
packet, the queue manager will extract the end-to-end sender
and receiver addresses, as well as the next-hop destination. To-
gether with the node’s ID, each queue in the network can be
identified by these 4-tuple. The queue manager then buffers
each application with respect to each outgoing wireless flow.

2) Dequeueing Process: When dequeuing, queuing man-
ager will first check the control packet queue. If the control
packet queue is empty, it will attempt to dequeue packets from
the data packet queue. For the data packet queue, queuing man-
ager will first check the flow tag table that contains all the flow
tags. Out of all the links that originate from this node and are
backlogged, it will select the link with the lowest flow tag to
service first. Within each link, there could be many different
backlogged streams. The queue manager’s task is to maintain
a separate tagging system within each link. We employ the de-
lay decoupling method and choose the appropriate packet and
deliver it to the MAC layer.

B. MAC Layer

1) Basic Message Exchange Sequence: In our protocol,
each data transmission follows a basic sequence of RTS-CTS-
DS-DATA-ACK handshake. Our message exchange sequence
is preceded by a backoff of a certain number of minislot times.
When a node has a packet to transmit, it waits for an appropriate
number of minislots before it initiates the RTS-CTS handshake.
The number of minislots is set equal to the number of neighbor-
ing flows that has smaller flow tag than the node that wishes to
transmit. If the backoff timer of a node expires without over-
hearing any ongoing transmission, the node is free to start RTS
to initiate the handshake. If the node overhears some ongoing
transmission, it cancels its backoff timer and defers until the
completion of ongoing transmissions. For a receiver, when a
RTS is received, it first checks its local table. If the flow’s tag
is also the smallest tag in the receiver flow tag table, then it re-
sponds with CTS. Otherwise, the receiver simply drops RTS.
Once the CTS is received, the sender will continue with the
DS-DATA-ACK sequence.

This method will prioritize the transmission of the node that
has the smallest flow tag. Effectively, it ensures the fairness
among the local neighbors. In addition, it allows for spa-
tial reuse by permitting nodes that do not interfere with other
ongoing transmissions to transmit, thus increasing the system
throughput.

2) Maintaining table information at both the sender and the
receiver: The information of the neighboring flows is distribu-
tively stored at the sender and receiver. This information needs
to be combined and known by the sender to make the schedul-
ing decision. A straightforward solution would be to broadcast

4

the receiver’s table to the sender periodically. However, signif-
icant overhead will be induced if the table is large and updated
frequently. In our design, we provide a better solution: if node
� is the sender of flow F , sender � knows precisely the back-
off value G �5 for a flow at the sender’s table, but does not know
G �5 . We will let the sender estimate G �5 . To this end, whenever
a flow F is transmitted through the RTS-CTS-DS-DATA-ACK
sequence, the ACK packet carries two parameters:

� 5 and � 5
in order for the sender to estimate G �5 later on.

� 5 tells us
how much services (in bytes) toward other flows have to be
served before flow F transmits its packet in the receiver’s ta-
ble.

� 5 � H�� 7�� �LK �	� K 5 ��
 5 , where
 5 is flow F ’s weight,
K � is flow � ’s current tag in the receiver table. The flow set
G denotes all flows that have smaller tag K � than KO5 of flow
F . �@5 denotes the backoff value for flow F at its receiver’s ta-
ble. When sender � receives this information, it records

� 5
for flow F , as well as the current time �=5 when the sender re-
ceives this information. Then, at any given later time � , sender
� estimates G �5� � 5�� � � 5 ��� � �L� � � 5 �=� * � 5 where � is
the channel capacity. Then the sender sets backoff for flow F as
G � � G

�
� (G

�
� . When the backoff timer G � expires, we ini-

tiate RTS-CTS handshake and convey G �� back to the receiver
to verify its estimation.

3) Propagating a flow’s updated service tag: In order to
propagate a flow’s service tag to all its one-hop neighbors in
the node graph and reduce the chance of information loss due
to collisions during the propagation, we attach the tag K � for
flow � in all four packets RTS, CTS, DS and ACK. However,
we do not use the updated tags for flow � in RTS and CTS
packets, since RTS and CTS do not ensure a successful trans-
mission. We still propagate this old flow tag to correct some
stale information in the one-hop neighborhood of the sender or
the receiver. When the handshake of RTS and CTS is com-
pleted, we attach the updated flow tag in DS and ACK, to in-
form neighboring nodes of the new updated service tag of the
current transmitting flow � . Whenever collision happens, we
invoke the standard random backoff algorithm.

V. SIMULATION EVALUATION

In this section, we will use simulations to evaluate the per-
formance of EMLM-FQ with different overlaying applications.
EMLM-FQ algorithm was implemented within the ns-2 sim-
ulator. The radio model is based on the existing commercial
wireless network with a radio transmission range of 250 meters
and channel capacity of 2Mbit/sec. Each simulation runs for
300 seconds and the results are compared to the IEEE 802.11
standard.

The applications of interest include: FTP-driven TCP traffic,
CBR-driven (constant bit rate) UDP traffic, audio-driven UDP
traffic and video-driven UDP traffic. For the FTP, CBR, and
audio sessions, the model in the ns-2 package is used. For the
video traffic, actual trace is used through the traffic trace func-
tionality of the ns-2 simulator. For TCP, TCP New Reno is
used. All packets are set to 512 bytes, except video traffic has a
varying packet size. We used Dynamic Source Routing (DSR)
as the routing protocol.

We present four different scenarios. Scenarios 1 and 2 are de-
signed to illustrate the fairness of our fair queueing algorithm

6

12

11

10

9

8

10 2 3 4 5

7

Fig. 4. Cross Topology

10

8

7

6543

2

19

0

Fig. 5. Dumbell Topology

Flow MAC 802.11 EMLM-FQ
0 to 7 (TCP) 525 2796
2 to 8 (TCP) 805 2741

9 to 10 (UDP) 13743 4819

TABLE I
SCENARIOS 1: THROUGHPUT

Flow MAC 802.11 EMLM-FQ
0 to 6 8782 3814
7 to 12 1614 3845

TABLE II
SCENARIO 2: THROUGHPUT

servicing different types of streams. Scenarios 3 and 4 are de-
signed to evaluate the effectiveness of our method in decoupling
delay and throughput.

A. Scenario 1

In this example, we demonstrate the effectiveness of the
EMLM-FQ protocol in preventing malicious traffic from cap-
turing the wireless channel via aggressively transmitting its own
traffic. We use a dumbbell topology of Figure 5 with three
streams of two FTP-driven TCP streams and one CBR-driven
UDP stream. The two TCP streams originate from node 0 and
node 2 and terminate at node 7 and node 8, respectively. The
CBR-driven UDP is sent at an aggressive rate from node 9 to
node 10 so that there will always be packets backlogged at node
9.

The result of the simulation is shown in Table I. Without
fair scheduling, IEEE 802.11 fails to provide adequate service
to the two TCP streams, while UDP captures the majority of
the channel bandwidth. EMLM-FQ provides better sharing and
prevents the two TCP streams from starvation.

B. Scenario 2

In this example, we want to demonstrate that our fair queue-
ing algorithm can help preserve the fair sharing of two TCP
flows having the same setup. We use a cross topology shown
in Figure 4, with six hops on each path. Two FTP-driven TCP
streams are used, one from node 0 to node 6, while the other
from node 7 to node 12.

The result is shown in Table II. FIFO scheduling with 802.11
MAC will lead to unfair share of the channel. EMLM-FQ, on

Flow MAC 802.11 EMLM-FQ
0 to 7 0.184881 0.048897
2 to 8 0.124382 0.103009
9 to 10 0.606635 0.127416

TABLE III
SCENARIO 3: DELAY JITTER IN SECONDS

Flow EMLM wo DD EMLM w DD
0 to 7 (audio) 653 653
2 to 8 (CBR) 7444 7443
9 to 10 (CBR) 7467 7469

TABLE IV
SCENARIO 4: THROUGHPUT

Flow EMLM w/o DD EMLM w/ DD
0 to 7 (audio) 0.413267 0.301599
2 to 8 (CBR) 0.302766 0.321640

9 to 10 (CBR) 0.356335 0.407058

TABLE V
SCENARIO 4: AVG. DELAY (SEC)

5

the other hand, is operating at its best by providing fair service
among the two contending TCP flows.

C. Scenario 3

In this scenario, we focus on multimedia traffic. We simu-
late a dumbbell topology with three video-driven UDP streams
using the actual MPEG trace of three movies. The set-up is
similar to Scenario 1 with three streams from node 0 to node 7,
node 2 to node 8, and node 9 to node 10, respectively. For typi-
cal streaming video, we are interested in the delay jitters of the
network. Having a large delay jitter will result in poor picture
quality that appears to be choppy.

The delay jitter of the three video streams is shown in Table
III. As the table shows, having EMLM-FQ schedule the chan-
nel access does provide better performance in terms of delay
jitters. The original MAC 802.11 standard employs a binary
exponential backoff method in resolving contention. Whenever
a node successfully transmits its packet, the contention window
is reset to the minimum window size. This results in bursty
transmissions and will lead to larger delay jitters.

D. Scenario 4

In this scenario, we study the effectiveness of our delay and
throughput decoupling algorithm. This scenario takes a similar
setup as the dumbbell topology of Figure 5, with two CBR-
driven UDP flows and one audio-driven UDP flow. The two
CBR-driven flows originate from node 2 and node 9, and end at
node 8 and node 10, respectively. The audio stream goes from
node 0 to node 7, and is operating at 8.8 Kbits/sec. The two
CBR sources transmit data at 100 Kbits/sec.

With the 802.11 MAC standard, the audio stream will starve
under the more aggressive CBR-driven UDP streams. Hence,
we exclude 802.11 MAC from study, and focus on comparing
results of EMLM-FQ with and without delay decoupling. The
simulation result is presented in Tables IV and V. In Table IV,
we see that the overall throughput remains almost the same with
only slight variations due to randomness. After verifying the
throughput, we move on to study the average delay of the three
traffic streams. From Table V, we can see that the audio traffic
benefits from the delay decoupling by reducing its average de-
lay from about 0.41 sec to about 0.3 second. This is achieved
at the cost of slight increase of average delay of the two CBR-
driven UDP flows.

E. Simulation Summary

After examining the set of scenarios we have simulated, we
conclude that EMLM-FQ holds a a clear advantage over the
original FIFO scheduling with 802.11 MAC. The utilization of
multiple queue prevents the aggressive UDP from overflow-
ing the buffer of the bottleneck node and starving other well-
behaving applications. In addition, the multiple queue allows
delay and throughput decoupling.

The distributed fair queuing algorithm also fares quite well
in comparison to FIFO scheduling with 802.11 MAC. The fair
scheduling component helps reduce the bandwidth capture ef-
fects. Unlike FIFO with 802.11 MAC, EMLM-FQ shows that

its flows, under similar conditions, can obtain an equal share of
service from the network. It makes packet transmissions more
regular as compared to the random burstiness nature of FIFO.
As a result, multimedia traffic such as video traffic would expe-
rience a smaller delay jitter, which translates to a better stream-
ing video quality.

The EMLM-FQ does have the drawback of lower through-
put as compared to FIFO with 802.11 MAC. There are three
factors contributing to this feature. First, to facilitate the ex-
change of flow tag between neighboring nodes, we have added
a DS packet that introduces some extra overhead. Second, the
added backoff period before the packet transmission for our
distributed scheduling purpose is another source of overhead.
These two factors are the tradeoffs for the ability to provide fair
queuing to the wireless network. Third, in a wireless environ-
ment, fairness may be in conflict with maximizing the aggre-
gated system throughput. Note that achieving maximum sys-
tem throughput is equivalent to identifying a maximal set of
flows that can transmit simultaneously and having this set of
flows continuously transmit without relinquishing the channel.
However, fairness may be violated in this extreme scenario.

VI. DISCUSSION

We now discuss several related issues.

A. Synchronization

The distributed fair queuing for channel access uses a novel
table-driven backoff approach to prioritize different links’
transmissions. For this method to be successful, the contending
nodes must be roughly synchronized with respect to each other.
This is not a problem within the local neighborhood of each
node. The ability to carrier sense the channel allows the nodes
to achieve local synchronization. The problem is more severe
when the node’s nearby contenders are not within the trans-
mission range. In this situation, the node will have no way of
knowing for sure when those farther away nodes start to backoff
their number of minislots. In terms of long-term fairness, this is
not a problem as the notion of lead and lag of each link is kept
by their respective service tags. However, it does have an effect
on the short-term fairness in that the exact order of transmission
might be changed.

B. Table Inconsistency

Although efforts are made for each node to broadcast its ser-
vice tag correctly, there is no guarantee for the service tag in-
formation to be delivered to each neighboring node. Collision
and/or channel error can sometimes induce table inconsistency
between neighboring nodes. This is another possible cause for
coarse fairness as stale table entries can make the neighboring
nodes end up having a different transmission order. However,
this inconsistency issue is temporal and correctable. Future ser-
vice tags updating from overhearing any of the more recent con-
trol packets will help correct this temporary table inconsistency.

6

VII. RELATED WORK

Packet scheduling has been one of the main networking re-
search areas. Many efforts have been made in studying fair
queuing on wireline and cellular wireless networks [1]–[5].
These solutions provide the basis for our study but do not ad-
dress the issues of the multihop wireless network.

In multihop wireless network, [7] and [8] study the problem
of ad-hoc fair scheduling and the focus of each work centers
around defining fair queuing in the ad hoc wireless network. In
particular, each work provides a trade-off between fairness and
overall throughput. The approaches these papers took are to as-
sume an ideal centralized scheduler and offer a glance of how it
can be distributively implemented. In two more recent propos-
als [6] and [9], the methods are refined in the distributed imple-
mentation of fair queuing. The solution of [6] is designed for a
wireless LAN where all the nodes were within the communica-
tion range. The work in [9] is our previous effort in designing
distributed fair queuing for multihop wireless networks. The
contributions include a table-base backoff algorithm that pro-
vides a mechanism for maintaining fairness and conserving the
spatial reuse. These research efforts, however, do not take on an
application perspective, and cannot support multiple classes of
application, with different delay and throughput requirements,
in a single framework. This is the focus of this work.

VIII. CONCLUSION

In this paper, we proposed a distributed fair queueing solu-
tion for providing scheduling service in the ad hoc wireless net-
work. At the link level, the distributed fair queueing handles the
scheduling of wireless channel access base on only local infor-
mation and computation. At the queueing level, it achieves de-
lay and throughput decoupling. The simulation results demon-
strate the effectiveness of our proposed solution in servicing
both bandwidth-sensitive and delay-sensitive applications.

REFERENCES

[1] A. Demers, S. Keshav and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” ACM SIGCOMM’89, August 1989.

[2] P. Goyal, H.M. Vin and H. Chen, “Start-time fair queueing: A schedul-
ing algorithm for integrated service access,” ACM SIGCOMM’96. Au-
gust 1996.

[3] S. Lu, V. Bharghavan and R. Srikant, “Fair scheduling in wireless
packet networks,” IEEE/ACM Trans. Networking, August 1999.

[4] T.S. Ng, I. Stoica and H. Zhang, “Packet fair queueing algorithms
for wireless networks with location-dependent errors,” IEEE INFO-
COM’98, March 1998.

[5] S. Lu, T. Nandagopal, and V. Bharghavan, “Fair scheduling in wireless
packet networks,” ACM MOBICOM’98, October 1998.

[6] N. H. Vaidya, P. Bahl and S. Gupta, “Distributed fair scheduling in a
wireless LAN,” ACM MOBICOM’00, August 2000.

[7] H. Luo and S. Lu, “A topology-independent fair queueing model in ad
hoc wireless networks,” IEEE ICNP’00, Nov. 2000.

[8] H. Luo, S. Lu and V. Bharghavan, “A new model for packet scheduling
in multihop wireless networks,” ACM MOBICOM’00, August 2000.

[9] H. Luo, P. Medvedev, J. Cheng, and S. Lu, ”A Self-Coordinating Ap-
proach to Distributed Fair Queueing in Ad Hoc Wireless Networks,”
IEEE INFOCOM’01, April 2001.

